Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Predicting The Viscosity Of Alkanes Using Nonequilibrium Molecular Dynamics: Evaluation Of Intermolecular Potential Models, Richard L. Rowley, William Allen Jun 1997

Predicting The Viscosity Of Alkanes Using Nonequilibrium Molecular Dynamics: Evaluation Of Intermolecular Potential Models, Richard L. Rowley, William Allen

Faculty Publications

Nonequilibrium molecular dynamics (NEMD) viscosity simulations of branched and linear alkanes at liquid densities were performed using both united-atom (UA) and all-atom (AA) intermolecular potential models in order to study the relative efficacy of the models in predicting fluid viscosity. Both models were used in conjunction with fixed bond lengths and bond angles, but different torsional potentials were investigated. The commonly used Ryckaert—Bellemans intermolecular potential model, which accurately predicts viscosities for short straight-chain alkanes, produced values for branched and long-chain alkanes that were significantly below experimental values. Likewise, a more complex UA model that uses transferrable site potentials and is …


Molecular-Level Modeling Of The Viscoelasticity Of Crosslinked Polymers: Effect Of Time And Temperature, P. P. Simon, Harry J. Ploehn Jan 1997

Molecular-Level Modeling Of The Viscoelasticity Of Crosslinked Polymers: Effect Of Time And Temperature, P. P. Simon, Harry J. Ploehn

Faculty Publications

We present a new molecular-level picture of chain dynamics for describing the viscoelasticity of crosslinked polymers. The associated mathematical model consists of a time-dependent momentum balance on a representative polymer segment in the crosslinked network, plus phenomenological expressions for forces acting on the segments. These include a cohesive force that accounts for intermolecular attraction, an entropic force describing the thermodynamics governing chain conformations, and a frictional force that captures the temperature dependence of relative chain motion. We treat the case of oscillatory uniaxial deformation. Solution of the model equations in the frequency domain yields the dynamic moduli as functions of …