Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Entire DC Network

Modeling And Development Of A Mems Device For Pyroelectric Energy Scavenging, Salwa Mostafa Aug 2011

Modeling And Development Of A Mems Device For Pyroelectric Energy Scavenging, Salwa Mostafa

Doctoral Dissertations

As the world faces an energy crisis with depleting fossil fuel reserves, alternate energy sources are being researched ever more seriously. In addition to renewable energy sources, energy recycling and energy scavenging technologies are also gaining importance. Technologies are being developed to scavenge energy from ambient sources such as vibration, radio frequency and low grade waste heat, etc. Waste heat is the most common form of wasted energy and is the greatest potential source of energy scavenging.

Pyroelectricity is the property of some materials to change the surface charge distribution with the change in temperature. These materials produce current as …


Design, Fabrication, And Characterization Of A Thin-Film Nickel-Titanium Shape Memory Alloy Diaphragm For Use In Micro-Electro-Mechanical Systems, Brian Joel Alvarez Aug 2011

Design, Fabrication, And Characterization Of A Thin-Film Nickel-Titanium Shape Memory Alloy Diaphragm For Use In Micro-Electro-Mechanical Systems, Brian Joel Alvarez

Master's Theses

Previous work done at Cal Poly has shown that thin-film nickel-titanium (NiTi) can be easily sputtered onto silicon wafers and annealed to create a crystallized shape memory alloy (SMA) film. Initial work on creating devices yielded cantilevers that were highly warped due to thin-film stress created during the sputtering process. The objective of this work was to create a thin-film NiTi SMA device that could be better characterized. A membrane was selected due to the simplicity of fabrication and testing which would also oppose the thin-film stress due to the increase in attachment points to the substrate.

Silicon wafers were …


Tunable Micro-Electro Mechanical Fabry Perot Etalon, Annette Rivas Aug 2011

Tunable Micro-Electro Mechanical Fabry Perot Etalon, Annette Rivas

Theses

Many different devices capable of spectral wavelength collection exist. The device we propose is an array of individually tunable MEMS Fabry Perot etalons capable of scanning from 400nm to 750nm as commanded. Typically when Fabry Perot devices are used additional etalons are placed in series to reject extra modes that would otherwise be passed by a single etalon. The device that is examined rejects the extra modes without the need for an extensive filtering scheme because the optical path length is held to ½ wavelength. The device proposed is thermally actuated. It has been modeled in COMSOL and shows even …


A Thermally Actuated Microelectromechanical (Mems) Device For Measuring Viscosity, Ivan Puchades Jul 2011

A Thermally Actuated Microelectromechanical (Mems) Device For Measuring Viscosity, Ivan Puchades

Theses

A thermally actuated non-cantilever-beam micro-electro-mechanical viscosity sensor is presented. The proposed device is based on thermally induced vibrations of a silicon-based membrane and its damping due to the surrounding fluid. This vibration viscometer device utilizes thermal actuation through an in-situ resistive heater and piezoresistive sensing, both of which utilize CMOS compatible materials leading to an inexpensive and reliable system. Due to the nature of the actuation, thermal analysis was performed utilizing PN diodes embedded in the silicon membrane to monitor its temperature. This analysis determined the minimum heater voltage pulse amplitude and time in order to prevent heat loss to …


Devices And Methods For Electro-Physical Transport Of Dna Across Cell Membranes, Quentin Theodore Aten Jun 2011

Devices And Methods For Electro-Physical Transport Of Dna Across Cell Membranes, Quentin Theodore Aten

Theses and Dissertations

A novel method for charged macromolecule delivery, called nanoinjection, has been developed at Brigham Young University. Nanoinjection combines micro-fabrication technology, mechanism design, and nano-scale electrical phenomenon to transport exogenous DNA across cell membranes on a nano-featured lance. DNA is electrically accumulated on the lance, precision movements of microelectromechanical systems (MEMS) physically insert the lance into cell, and DNA is electrically released from the lance into the cell. Penetration into the cell is achieved through a two-phase, self-reconfiguring metamorphic mechanism. The surface-micromachined, metamorphic nanoinjector mechanism elevates the lance above the fabrication substrate, then translates in-plane at a constant height as the …


Modeling, Design, And Testing Of An Underwater Microactuation System Using A Standard Mems Foundry Process, Gregory L. Holst Apr 2011

Modeling, Design, And Testing Of An Underwater Microactuation System Using A Standard Mems Foundry Process, Gregory L. Holst

Theses and Dissertations

This work presents the modeling, design, and testing of an underwater microactuation system. It is composed of several thermomechanical in-plane microactuators (TIM) integrated with a ratchet system to provide long displacements and high forces to underwater microelectromechanical systems (MEMS). It is capable of actuating a 200µN load 110µm. It is a two-layer silicon MEMS device fabricated with a MEMS fabrication process, PolyMUMPS. This work also shows the development of an elliptic integral model to analyze the compliant fixed-guided beams in the TIM and gives new insight into the buckling behavior, reaction forces, and displacement of the beams. The derivation, verification, …


High Frequency Thermally Actuated Single Crystalline Silicon Micromechanical Resonators With Piezoresistive Readout, Amir Rahafrooz Jan 2011

High Frequency Thermally Actuated Single Crystalline Silicon Micromechanical Resonators With Piezoresistive Readout, Amir Rahafrooz

Electronic Theses and Dissertations

Over the past decades there has been a great deal of research on developing high frequency micromechanical resonators. As the two most common and conventional MEMS resonators, piezoelectric and electrostatic resonators have been at the center of attention despite having some drawbacks. Piezoelectric resonators provide low impedances that make them compatible with other low impedance electronic components, however they have low quality factors and complicated fabrication processes. In case of electrostatic resonators, they have higher quality factors but the need for smaller transductions gaps complicates their fabrication process and causes squeezed film damping in Air. In addition, the operation of …


Label-Free Biochemical Recognition Using Mems Resonators For Microarray Technology, Babak Tousifar Jan 2011

Label-Free Biochemical Recognition Using Mems Resonators For Microarray Technology, Babak Tousifar

Electronic Theses and Dissertations

Highly sensitive biosensors capable of detecting and characterizing smallest quantities of cellular and molecular targets are needed in pharmaceutical and medical diagnostics industries. In this work, the importance of biological target recognition specifically proteins through microarray technologies has been discussed and the most successful tools and techniques have been studied. Moreover, a thermally actuated Micro Electro-Mechanical Systems (MEMS) resonator has been demonstrated and fabricated in this work as an accurate, reliable and low cost biotechnology tool. As a proof of concept, amine to epoxide coupling of octadecylamine to functionalized silicon dioxide surface have been shown through resonator frequency monitoring. The …


Small Footprint High Flow Rate Microdevice For Rare Target Cell Capture, Taehyun Park Jan 2011

Small Footprint High Flow Rate Microdevice For Rare Target Cell Capture, Taehyun Park

LSU Doctoral Dissertations

A novel high flow rate cell capture design was introduced to overcome the limitations of the current technologies or methods for rare target cell capture. Even though the rare target cell capture using BioMEMS technology has great potential for cancer diagnosis, previous rare cell capture research could not overcome the limitations of low flow rate or low recovery rate. Rare cell research requires precise sample preparation for accurate results. A new method of preparation for a single or a precise number of target cell was introduced. Current sample preparation methods which are not suitable for rare cell research, such as …