Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Entire DC Network

Development Of A Novel Class Of Chemicals For Labeling Abasic Sites In Cellular Dna And Killing Cancer Cells, Shanqiao Wei Sep 2016

Development Of A Novel Class Of Chemicals For Labeling Abasic Sites In Cellular Dna And Killing Cancer Cells, Shanqiao Wei

Wayne State University Dissertations

Abasic (AP) sites are the most common type of lesions in DNA. Numerous endogenous and exogenous agents and cellular processes can induce the formation of AP sites in DNA. If left unrepaired, the deleterious AP sites cause mutagenesis and cytotoxicity. Methoxyamine is known to react with AP sites and block base excision repair. Another alkoxyamine, aldehyde-reactive probe (ARP) tags AP sites with a biotin and has been widely used to quantify these sites. In this study, I have combined both these abilities into one alkoxyamine, AA3, which reacts toward AP sites with better reactivity than ARP at physiological pH. Additionally, …


Insights Into De Novo Fes-Cluster Biogenesis Via The Eukaryotic Fes-Cluster (Isc) Pathway In Vitro, Stephen Paul Dzul Jan 2016

Insights Into De Novo Fes-Cluster Biogenesis Via The Eukaryotic Fes-Cluster (Isc) Pathway In Vitro, Stephen Paul Dzul

Wayne State University Dissertations

Fe-S clusters are iron-containing cofactors utilized by numerous proteins within several biological pathways essential to life. In eukaryotes, the primary pathway for Fe-S cluster production is the iron-sulfur cluster (ISC) pathway. The eukaryotic ISC pathway, localized primarily within the mitochondria, has been best characterized within Saccharomyces cerevisiae. In yeast, de novo Fe-S cluster formation is accomplished through coordinated assembly of the substrates iron and sulfur on the primary scaffold assembly protein “Isu1”. The sulfur used for cluster assembly is provided by the cysteine desulfurase “Nfs1”, a protein that works in union with its accessory protein “Isd11”. Frataxin “Yfh1” helps direct …


Development Of Gamma-Modified Atp Analogs To Study Kinase-Catalyzed Phosphorylations, Ahmed Eid Fouda Jan 2016

Development Of Gamma-Modified Atp Analogs To Study Kinase-Catalyzed Phosphorylations, Ahmed Eid Fouda

Wayne State University Dissertations

Kinase-catalyzed protein phosphorylation is one of the most important post-translational modifications that controls cascades of biochemical reactions. Irregularities in phosphorylation result in many diseases, such as diabetes mellitus, Parkinsons, and cancer. The development of new methods to monitor kinase-catalyzed phosphorylation is needed to decipher details of normal and diseased cell signaling. The Pflum lab recently developed several -modified ATP analogs to study kinase catalyzed phosphorylation reactions. The -modified ATP analogs have different tags, such as biotin for substrate labeling or aryl-azide for kinase substrates identification. Unfortunately, use of -modified ATP analogs was limited to in vitro studies due to the …


A Critical Role Of Cxcr2 Pdz Motif-Mediated Interactions In Endothelial Progenitor Cell Homing And Angiogenesis, Yuning Hou Jan 2016

A Critical Role Of Cxcr2 Pdz Motif-Mediated Interactions In Endothelial Progenitor Cell Homing And Angiogenesis, Yuning Hou

Wayne State University Dissertations

Bone marrow-derived endothelial progenitor cells (EPCs) participate in postnatal vascularization in response to growth factors, cytokines, and chemokines. Chemokine receptor CXCR2 and its cognate ligands are reported to mediate EPC recruitment and angiogenesis. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ) motif at its carboxyl terminus. The PDZ motif has been reported to regulate cellular signaling and functions. Here we investigated the potential role of the PDZ motif in CXCR2-mediated EPC motility and angiogenesis. We have found that introducing exogenous CXCR2 C-terminus significantly attenuated in vitro EPC migration and angiogenic activities in response to CXCR2 ligands, as well as in vivo EPC …


Investigation Of Mutations In Nuclear Genes That Affect The Atp Synthase, Russell Dsouza Jan 2016

Investigation Of Mutations In Nuclear Genes That Affect The Atp Synthase, Russell Dsouza

Wayne State University Dissertations

The F1 domain is the catalytic subunit of the mitochondrial ATP synthase. Studies with respiratory-deficient yeast identified ATP1 and ATP2 as nuclear genes encoding the alpha and beta subunits, respectively, of the mitochondrial F1-ATPase. The mutations in the atp1 and atp2 genes were cloned and sequenced, and they appear to affect the ATP synthase. Most yeast strains with mutations in the or the subunit primarily show an F1 assembly defective phenotype. This feature is similar to the assembly-defective mutants missing the chaperones required for assembly of the F1 oligomer or either the alpha/beta subunits.

Some of the atp2 and atp1 …


Novel Regulatory Mechanisms Of Inositol Biosynthesis In Saccharomyces Cerevisiae And Mammalian Cells, And Implications For The Mechanism Underlying Vpa-Induced Glucose 6-Phosphate Depletion, Wenxi Yu Jan 2016

Novel Regulatory Mechanisms Of Inositol Biosynthesis In Saccharomyces Cerevisiae And Mammalian Cells, And Implications For The Mechanism Underlying Vpa-Induced Glucose 6-Phosphate Depletion, Wenxi Yu

Wayne State University Dissertations

Myo-inositol is the precursor of all inositol containing molecules, including inositol phosphates, phosphoinositides and glycosylphosphatidylinositols, which are signaling molecules involved in many critical cellular functions. Perturbation of inositol metabolism has been linked to neurological disorders. Although several widely-used anticonvulsants and mood-stabilizing drugs have been shown to exert inositol depletion effects, the mechanisms of action of the drugs and the role of inositol in these diseases are not understood. Elucidation of the molecular control of inositol synthesis will shed light on the pathologies of inositol related illnesses.

In Saccharomyces cerevisiae, deletion of the four glycogen synthase kinase-3 genes, MCK1, MRK1, MDS1, …


Structural Characterization And Therapeutic Utility Of The Proton-Coupled Folate Transporter, Michael Roy Wilson Jan 2016

Structural Characterization And Therapeutic Utility Of The Proton-Coupled Folate Transporter, Michael Roy Wilson

Wayne State University Dissertations

Folate is a B9 vitamin essential to DNA synthesis. The proton-coupled folate transporter (PCFT) is a newly discovered proton/folate symporter with an acidic pH optimum and broad expression across a variety of solid tumor types, with limited expression in normal tissues. Several antifolate molecules have been developed as cancer therapeutics, although these classical antifolates display numerous off-target effects due to transport by the ubiquitous reduced folate carrier (RFC). In this dissertation, we determine the roles of multiple PCFT structure/function domains, and develop PCFT-specific antifolates to target solid tumors. We utilize substituted cysteine accessibility methods (SCAM) to identify a novel reentrant …


The Development Of Peptide Ligands To Target H69 Rrna, Danielle Nicole Dremann Jan 2016

The Development Of Peptide Ligands To Target H69 Rrna, Danielle Nicole Dremann

Wayne State University Dissertations

ABSTRACT

THE DEVELOPMENT OF PEPTIDE LIGANDS TO TARGET H69

by

DANIELLE NICOLE DREMANN

December 2015

Advisor: Prof. Christine S. Chow

Major: Chemistry (Biochemistry)

Degree: Doctor of Philosophy

In the development of peptide ligands to target H69, SPPS and ESI MS was used to determine if 1) peptides could bind to modified H69 and 2) if increased affinity for the target RNA could be enhanced with modification. An alanine and arginine scan was synthesized and tested for this determination. Selected peptides were then tested using biophysical techniques such as circular dichroism and isothermal titration calorimetry. An assay was also designed to …


Regulation Of Cytochrome C Functions By Phosphorylation, Gargi Mahapatra Jan 2016

Regulation Of Cytochrome C Functions By Phosphorylation, Gargi Mahapatra

Wayne State University Dissertations

The long term goal of my thesis research is to understand how tissue-specific

phosphorylations on the small mitochondrial protein, cytochrome c (Cytc), regulate its

functions, under both physiologically healthy and stressed conditions, and to identify the

cell signaling pathways targeting Cytc. Cytc is a functionally diverse protein that carries

electrons in the electron transport chain and plays a critical role in cellular apoptosis, two

diverse pathways that maintain cellular health that are active under diverse conditions.

Since Cytc plays a pivotal role in both these highly divergent pathways, regulation of the

protein is very important—phosphorylation of the protein under physiological …


Characterization Of The Yeast Cysteine Desulfurase Complex Within The Mitochondrial Fe-S Cluster Biogenesis, Dulmini Pabasara Barupala Jan 2016

Characterization Of The Yeast Cysteine Desulfurase Complex Within The Mitochondrial Fe-S Cluster Biogenesis, Dulmini Pabasara Barupala

Wayne State University Dissertations

Disrupted iron homeostasis within the human body materializes as various disorders. Pathophysiology of many of them relates to iron induced oxidative damage to key cellular components caused by iron accumulation within the tissues. Pertaining to the growing occurrence, cost of patient care and devastating burden associated with these diseases, the call for understanding the role of iron homeostasis within these disorders becomes inevitable. Being an abundant iron containing cofactor, the role of Fe-S clusters in cellular iron homeostasis is indisputable in the case of Friedreich’s ataxia, a disease caused by a deficiency in the protein frataxin that is indispensable during …


Studies Towards Broadening The Substrate Profile And Regulation Of Histone Deacetylase 1, Dhanusha Ashanthi Nalawansha Jan 2016

Studies Towards Broadening The Substrate Profile And Regulation Of Histone Deacetylase 1, Dhanusha Ashanthi Nalawansha

Wayne State University Dissertations

Aberrant expression of histone deacetylase 1 (HDAC1) is implicated in multiple diseases, including cancer. As a consequence, HDAC1 has emerged as an important therapeutic target for drug development. HDAC1 regulates key cellular processes, such as cell proliferation, apoptosis, and cell survival, by deacetylating both histone and non-histone substrates. Due to the lack of simple tools to identify physiological substrates of HDAC1, the full spectrum of HDAC1 activities in the cell remains unclear. Here, we employed a substrate trapping strategy to identify cellular substrates of HDAC1. Using this approach, we identified mitosis-related protein Eg5 as a substrate. HDAC1 colocalizes with Eg5 …


Cardiolipin Is Required For Optimal Acetyl-Coa Metabolism, Vaishnavi Raja Jan 2016

Cardiolipin Is Required For Optimal Acetyl-Coa Metabolism, Vaishnavi Raja

Wayne State University Dissertations

The phospholipid cardiolipin (CL) is crucial for many cellular functions and signaling pathways, both inside and outside of mitochondria. My thesis focuses on the role of CL in energy metabolism. Many reactions of electron transport and oxidative phosphorylation, the transport of metabolites needed for these processes, and the stabilization of electron transport chain supercomplexes, require CL. Recent studies indicate that CL is required for the synthesis of iron-sulfur (Fe-S) co-factors, which are essential for numerous metabolic pathways. Activation of carnitine-acetylcarnitine translocase, which transports acetyl-CoA into the mitochondria, is CL dependent. The presence of substantial amounts of CL in the peroxisomal …