Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 48

Full-Text Articles in Entire DC Network

Quantum Mechanics And Dynamical Models For Finite Unlabeled Simple Graphs, Nathan M. Lewis Jan 2023

Quantum Mechanics And Dynamical Models For Finite Unlabeled Simple Graphs, Nathan M. Lewis

Master's Theses

This thesis constructs quantum mechanical theories of finite simple graphs for both labeled and unlabeled graphs.These theories may provide a description for discrete spacetime in a quantum gravity theory. Finite simple graphs and their properties are introduced. The first and second quantization of the standard quantum mechanics of particle systems are reviewed. A quantum mechanical theory of graphs similar to first quantization of standard quantum mechanics is developed via a correspondence of graph edges to particles in particle systems. An algorithm for constructing quantum states of graphs which is independent of graph vertex labeling is developed. It builds antisymmetric graphstates …


Bosons In Anti De Sitter Spacetime, Thi Khanh Linh Pham Jan 2023

Bosons In Anti De Sitter Spacetime, Thi Khanh Linh Pham

Master's Theses

I am extremely grateful to Dr. Kassahun Betre for his support and guidance throughout my thesis journey. His wisdom, knowledge, and encouragement have been invaluable to me. His willingness to take me on making this project and the collaborative friendship is the highlight of my master’s program. Many thanks to Dr. Curtis Asplund and Dr. Ehsan Khatami for participating on my committee and with regard to their valuable feedback on my thesis draft, ensuring the completion of this work. Finally, I am grateful to my family for their unwavering love and all the support and absolute patience over the years …


Solving Chromatic Number With Quantum Search And Quantum Counting, David Lutze Jun 2021

Solving Chromatic Number With Quantum Search And Quantum Counting, David Lutze

Master's Theses

This thesis presents a novel quantum algorithm that solves the Chromatic Number problem. Complexity analysis of this algorithm revealed a run time of O(2n/2n2(log2n)2). This is an improvement over the best known algorithm, with a run time of 2nnO(1) [1]. This algorithm uses the Quantum Search algorithm (often called Grover's Algorithm), and the Quantum Counting algorithm. Chromatic Number is an example of an NP-Hard problem, which suggests that other NP-Hard problems can also benefit from a speed-up provided by quantum technology. This has wide implications as many real world problems can …


Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman Jun 2021

Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman

Master's Theses

Thermals are regions of rising hot air formed on the ground through the warming of the surface by the sun. Thermals are commonly used by birds and glider pilots to extend flight duration, increase cross-country distance, and conserve energy. This kind of powerless flight using natural sources of lift is called soaring. Once a thermal is encountered, the pilot flies in circles to keep within the thermal, so gaining altitude before flying off to the next thermal and towards the destination. A single thermal can net a pilot thousands of feet of elevation gain, however estimating thermal locations is not …


Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu Jun 2021

Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu

Master's Theses

The processors and digital circuits designed today contain billions of transistors on a small piece of silicon. As devices are becoming smaller, slimmer, faster, and more efficient, the transistors also have to keep up with the demands and needs of the daily user. Unfortunately, the CMOS technology has reached its limit and cannot be used to scale down due to the transistor's breakdown caused by short channel effects. An alternative solution to this is the FinFET transistor technology, where the gate of the transistor is a three dimensional fin that surrounds the transistor and prevents the breakdown caused by scaling …


Multi-Scale Computational Modeling Of Metal/Ceramic Interfaces, Abu Shama Mohammad Miraz May 2021

Multi-Scale Computational Modeling Of Metal/Ceramic Interfaces, Abu Shama Mohammad Miraz

Master's Theses

Multi-scale atomistic calculations were carried out to understand the interfacial features that dictate the mechanical integrity of the metal/ceramic nanolaminates. As such, first principles density functional theory (DFT) calculations were performed to understand the electronic and atomistic factors governing adhesion and resistance to shear for simple metal/ceramic interfaces, whereas molecular dynamics (MD) simulations were performed to observe the impact of interfacial structures, such as misfit dislocation network geometries and orientation relationships, on interfacial mechanical properties.

For the DFT investigation, we choose metals with different crystal structures, namely - Cu (fcc), Cr (bcc) and Ti (hcp) along with a variety of …


Comparing Radiation Shielding Potential Of Liquid Propellants To Water For Application In Space, John Czaplewski Mar 2021

Comparing Radiation Shielding Potential Of Liquid Propellants To Water For Application In Space, John Czaplewski

Master's Theses

The radiation environment in space is a threat that engineers and astronauts need to mitigate as exploration into the solar system expands. Passive shielding involves placing as much material between critical components and the radiation environment as possible. However, with mass and size budgets, it is important to select efficient materials to provide shielding. Currently, NASA and other space agencies plan on using water as a shield against radiation since it is already necessary for human missions. Water has been tested thoroughly and has been proven to be effective. Liquid propellants are needed for every mission and also share similar …


Pressure Driven Desalination Utilizing Nanomaterials, Fangyou Xie Sep 2020

Pressure Driven Desalination Utilizing Nanomaterials, Fangyou Xie

Master's Theses

Nanomaterials such as graphene oxide and carbon nanotubes, have demonstrated excellent properties for membrane desalination, including decrease of maintenance, increase of flux rate, simple solution casting, and impressive chemical inertness. Here, two projects are studied to investigate nanocarbon based membrane desalination. The first project is to prepare hybrid membranes with amyloid fibrils intercalated with graphene oxide sheets. The addition of protein amyloid fibrils expands the interlayer spacing between graphene oxide nanosheets and introduces additional functional groups in the diffusion pathways, resulting in increase of flux rate and rejection rate for the organic dyes. Amyloid fibrils also provide structural assistance to …


A Study Of The Design Of Adaptive Camber Winglets, Justin J. Rosescu Jun 2020

A Study Of The Design Of Adaptive Camber Winglets, Justin J. Rosescu

Master's Theses

A numerical study was conducted to determine the effect of changing the camber of a winglet on the efficiency of a wing in two distinct flight conditions. Camber was altered via a simple plain flap deflection in the winglet, which produced a constant camber change over the winglet span. Hinge points were located at 20%, 50% and 80% of the chord and the trailing edge was deflected between -5° and +5°. Analysis was performed using a combination of three-dimensional vortex lattice method and two-dimensional panel method to obtain aerodynamic forces for the entire wing, based on different winglet camber configurations. …


Design Of A 5 Degree Of Freedom Kinematic Stage For The Dual Crystal Backlighter Imager Diagnostic, Nicholas Nguyen Jun 2020

Design Of A 5 Degree Of Freedom Kinematic Stage For The Dual Crystal Backlighter Imager Diagnostic, Nicholas Nguyen

Master's Theses

The National Ignition Facility (NIF) is home to the world’s most energetic laser. The facility is one of the leading centers in inertial confinement fusion (ICF) experiments to research and understand sustainable fusion energy. To fully document and understand the physics occurring during experiments, precise diagnostics are used for a wide range of purposes. One diagnostic, the crystal backlighter imager (CBI), allows for X-ray imaging of the target at late stages of its implosion.

The aim of this project was to increase the current capabilities of the CBI diagnostic with the addition of a second crystal. This thesis focuses on …


The Variability Of High-Frequency Motions And Their Interactions With The Mesoscale On The Mississippi Shelf, Jordan Earls Dec 2019

The Variability Of High-Frequency Motions And Their Interactions With The Mesoscale On The Mississippi Shelf, Jordan Earls

Master's Theses

In this study, we examine the spatial and temporal variability of high-frequency and low-frequency motions across the Mississippi Shelf and how the high-frequency motions are modulated by low-frequency mesoscale motions. For this purpose, we use Acoustic Doppler Current Profiler (ADCP) measurements collected at nearshore (23 m), mid-shelf (60 m), and shelf break (88 m) stations. High-frequency motions are defined as motions with periods less than 36 hours, whereas mesoscale motions have larger periods. The collected datasets are analyzed through bandpass filtering, least square harmonic analysis, spectral analysis, and empirical orthogonal functions (EOF). We find that along-shelf barotropic mesoscale motions contain …


A Rotating Aperture Mask For Small Telescopes, Edward L. Foley Nov 2019

A Rotating Aperture Mask For Small Telescopes, Edward L. Foley

Master's Theses

Observing the dynamic interaction between stars and their close stellar neighbors is key to establishing the stars’ orbits, masses, and other properties. Our ability to visually discriminate nearby stars is limited by the power of our telescopes, posing a challenge to astronomers at small observatories that contribute to binary star surveys. Masks placed at the telescope aperture promise to augment the resolving power of telescopes of all sizes, but many of these masks must be manually and repetitively reoriented about the optical axis to achieve their full benefits. This paper introduces a design concept for a mask rotation mechanism that …


Extended-Range Oscillations And The First Sharp Diffraction Peak In Amorphous Silicon: A Systematic Study, Devilal Dahal Aug 2019

Extended-Range Oscillations And The First Sharp Diffraction Peak In Amorphous Silicon: A Systematic Study, Devilal Dahal

Master's Theses

The first sharp diffraction peak (FSDP), which characterizes the static structure factor of many glassy systems near the wave vector region of 1-2 Å-1 has been observed depending on the temperature, pressure and the degree of annealing of the system. The presence of the FSDP is indicative of the intermediate range order (IRO). In current work, we study the role of the extended- range oscillations on the parameters of the FSDP, i.e., intensity, position, area, and the full width at half maximum (FWHM) by using high-quality simulated models of amorphous silicon. The radial distance up to half of the …


A System For Conducting Laser-Induced Fluorescence Measurements On Gas Mixtures Exposed To Alpha Radiation, Patrick Ables Aug 2018

A System For Conducting Laser-Induced Fluorescence Measurements On Gas Mixtures Exposed To Alpha Radiation, Patrick Ables

Master's Theses

This paper documents modifications to an existing vacuum system to allow laser-induced fluorescence spectroscopy measurements within simulated atmospheres under a variety of conditions. This added capability will expand the laboratory’s ability to experimentally validate a computational model that calculates the effects of radiation within the atmosphere. The computational model could reveal radiation-induced chemical products that can be used to develop an alternative detection method that can be implemented from a safe distance. The selection of molecules for experimental validation has been limited to those which can be detected utilizing cavity ringdown spectroscopy. The current model indicates nitric oxide and ozone …


Cavity Ringdown Spectroscopy In Nitrogen/Oxygen Mixtures In The Presence Of Alpha Radiation, Sidney John Gautrau Dec 2016

Cavity Ringdown Spectroscopy In Nitrogen/Oxygen Mixtures In The Presence Of Alpha Radiation, Sidney John Gautrau

Master's Theses

This research was part of an effort to experimentally validate computational models under development for radiation-induced atmospheric effects. Cavity Ringdown Spectroscopy (CRDS) was used to measure the concentration of chemical products generated as a result of radiation interactions in a controlled atmosphere. Experiments were conducted in a vacuum chamber interfaced with a gas introduction system that controlled the initial atmospheric composition. A quadrupole mass spectrometer and tunable dye laser were integrated to confirm initial atmospheric composition, and provide wavelength flexibility for detecting a variety of chemical products generated by radiation interactions. CRDS measurements were made for ozone production resulting from …


Lorentz Invariant Spacelike Surfaces Of Constant Mean Curvature In Anti-De Sitter 3-Space, Jamie Patrick Lambert Aug 2015

Lorentz Invariant Spacelike Surfaces Of Constant Mean Curvature In Anti-De Sitter 3-Space, Jamie Patrick Lambert

Master's Theses

In this thesis, I studied Lorentz invariant spacelike surfaces with constant mean curvature H = c in the anti-de Sitter 3-space H31(−c2) of constant curvature −c2. In particular, I construct Lorentz invariant spacelike surfaces of constant mean curvature c and maximal Lorentz invariant spacelike surfaces in H31(−c2). I also studied the limit behavior of those constant mean curvature c surfaces in H31(−c2). It turns out that they approach a maximal catenoid in Minkowski 3-space E31 as c → …


Analysis And Optimization Of The Scheffler Solar Concentrator, Simone Alberti Dec 2014

Analysis And Optimization Of The Scheffler Solar Concentrator, Simone Alberti

Master's Theses

The Scheffler reflector is a new solar concentrator design which maintains a fixed focus while only having a single axis tracking mechanism. This design makes the construction and operation of high temperature solar concentrators accessible to developing nations. In this project, I wrote computer simulation codes to better understand the dynamics and the effect of deformation or deviations from ideal conditions in order to define necessary manufacturing and operational tolerances. These tools and knowledge drove the prototyping of new reflector concepts by myself and other students on my team. A fiberglass prototype was able to drive the cost of a …


Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues In Bulk Mixtures Of Polythiophenes And Zinc Oxide Nanostructures, Grant T. Olson Jun 2014

Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues In Bulk Mixtures Of Polythiophenes And Zinc Oxide Nanostructures, Grant T. Olson

Master's Theses

Organic photovoltaics (OPVs) have received a great deal of focus in recent years as a possible alternative to expensive silicon based solar technology. Current challenges for organic photovoltaics are centered around improving their lifetimes and increasing their power conversion efficiencies. One approach to improving the lifetime of such devices has been the inclusion of inorganic metal oxide layers, but interaction between the metal oxides and common conjugated polymers is not favorable. Here we present two methods by which the interactions between polythiophenes and nanostructured ZnO can be made to be more favorable. Using the first method, direct side on attachment …


Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano Jun 2014

Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano

Master's Theses

Using an explicit integration method in physically based animations has many advantages including conceptual and computational simplicity, however, it re- quires small time steps to ensure low numerical instability. Simulations with large numbers of individually interacting components such as cloth, hair, and fluid models, are limited by the sections of particles most susceptible to error. This results in the need for smaller time steps than required for the majority of the system. These sections can be diverse and dynamic, quickly changing in size and location based on forces in the system. Identifying and handling these trou- blesome sections could allow …


On The Growth Rate Of Turbulent Mixing Layers: A New Parametric Model, Jeffrey L. Freeman Mar 2014

On The Growth Rate Of Turbulent Mixing Layers: A New Parametric Model, Jeffrey L. Freeman

Master's Theses

A new parametric model for the growth rate of turbulent mixing layers is proposed. A database of experimental and numerical mixing layer studies was extracted from the literature to support this effort. The domain of the model was limited to planar, spatial, nonreacting, free shear layers that were not affected by artificial mixing enhancement techniques. The model is split into two parts which were each tuned to optimally fit the database; equations for an incompressible growth rate were derived from the error function velocity profile, and a function for a compressibility factor was generalized from existing theory on the convective …


A Tunable Electromagnetic Band-Gap Microstrip Filter, Greg A. Lancaster Jan 2013

A Tunable Electromagnetic Band-Gap Microstrip Filter, Greg A. Lancaster

Master's Theses

In high frequency design, harmonic suppression is a persistent struggle. Non-linear devices such as switches and amplifiers produce unwanted harmonics which may interfere with other frequency bands. Filtering is a widely accepted solution, however there are various shortcomings involved. Suppressing multiple harmonics, if desired, with traditional lumped element and distributed component band-stop filters requires using multiple filters. These topologies are not easily made tunable either. A new filter topology is investigated called Electromagnetic Band-Gap (EBG) structures.

EBG structures have recently gained the interest of microwave designers due to their periodic nature which prohibits the propagation of certain frequency bands. EBG …


The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride Jun 2012

The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride

Master's Theses

Previous research in InGaN/GaN light emitting diodes (LEDs) employing semi-classical drift-diffusion models has used reduced polarization constants without much physical explanantion. This paper investigates possible physical explanations for this effective polarization reduction in InGaN LEDs through the use of the simulation software SiLENSe. One major problem of current LED simulations is the assumption of perfectly discrete transitions between the quantum well (QW) and blocking layers when experiments have shown this to not be the case. The In concentration profile within InGaN multiple quantum well (MQW) devices shows much smoother and delayed transitions indicative of indium diffusion and drift during …


Point-Spread Function Assessment Of Sg-Dbr Based Swept Source For Oct Imaging, David Wilkey Gilbert Jun 2012

Point-Spread Function Assessment Of Sg-Dbr Based Swept Source For Oct Imaging, David Wilkey Gilbert

Master's Theses

Swept Source Optical Coherence Tomography (SS-OCT) is a medical imaging technique that requires high repetition rate, widely-tunable coherent laser sources. Sampled grating distributed Bragg reflector (SG-DBR) lasers are proven in telecom applications and are expected to fulfill the requirements for SS-OCT at a significantly lower cost than alternative solutions.

Constructed entirely on a semiconductor substrate, SG-DBR lasers require four synchronized waveforms to modulate the output wavelength and intensity. Because of this unique tuning mechanism, there are a number of systematic and noise sources that can affect the quality of the OCT point-spread function (PSF). Based on these noise sources, software …


Agent-Based Modeling Of Emergency Building Evacuation, Vi Q. Ha May 2012

Agent-Based Modeling Of Emergency Building Evacuation, Vi Q. Ha

Master's Theses

Panic during emergency building evacuation can cause crowd stampede, resulting in serious injuries and casualties. Agent-based methods have been successfully employed to investigate the collective human behavior during emergency evacuation in cases where the configurational space is extremely simple - usually one rectangular room - but not in evacuations of multi-room or multi-floor buildings. This implies that the effect of the complexity of building architecture on the collective behavior of the agents during evacuation has not been fully investigated. Here, we employ a system of self-moving particles whose motion is governed by the social-force model to investigate the effect of …


Techniques To Characterize Vapor Cell Performance For A Nuclear-Magnetic-Resonance Gyroscope, James Julian Mirijanian May 2012

Techniques To Characterize Vapor Cell Performance For A Nuclear-Magnetic-Resonance Gyroscope, James Julian Mirijanian

Master's Theses

Research was performed to improve the procedures for testing performance parameters of vapor cells for a nuclear-magnetic-resonance gyroscope. In addition to summarizing the theoretical infrastructure of the technology, this research resulted in the development and successful implementation of new techniques to characterize gyro cell performance.

One of the most important parameters to measure for gyro performance is the longitudinal spin lifetime of polarized xenon atoms in the vapor cell. The newly implemented technique for measuring these lifetimes matches results from the industry standard method to within 3.5% error while reducing the average testing time by 76% and increasing data resolution …


Synthesis, Field Emission And Associated Degradation Mechanisms Of Tapered Zno Nanorods, Gregory M. Wrobel Mr. Aug 2011

Synthesis, Field Emission And Associated Degradation Mechanisms Of Tapered Zno Nanorods, Gregory M. Wrobel Mr.

Master's Theses

Equation 1..... 4

Equation 2..... 4

Equation 3..... 6

Equation 4..... 7

Equation 5..... 9

Equation 6..... 10

Equation 7..... 11

Equation 8..... 12

Equation 9..... 14

Equation 10..... 40

Equation 11..... 51

Synthesis, Field Emission and Associated Degradation Mechanisms of Tapered ZnO Nanorods

Gregory Michael Wrobel, M.S.

University of Connecticut, 2011

Modern development of field emitter arrays (FEA) has been made possible, partly thanks to the synthesis and development of one-dimensional (1D) nanostructures. High aspect ratio 1D nanostructures effectively amplify the electric field at the emitter tips, allowing electrons to be extracted at relatively low electric field. An inexpensive …


Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel Jun 2011

Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel

Master's Theses

Spacecraft pointing accuracy and structural longevity requirements often necessitate auxiliary vibration dissipation mechanisms. However, temperature sensitivity and material degradation limit the effectiveness of traditional damping techniques in space. Robust particle damping technology offers a potential solution, driving the need for microgravity characterization. A 1U cubesat satellite presents a low cost, low risk platform for the acquisition of data needed for this evaluation, but severely restricts available mass, volume, power and bandwidth resources. This paper details the development of an instrument subject to these constraints that is capable of capturing high resolution frequency response measurements of highly nonlinear particle damper dynamics.


Implementation Of The Clas12 Htcc Into Gemc, Nathan A. Harrison Dec 2010

Implementation Of The Clas12 Htcc Into Gemc, Nathan A. Harrison

Master's Theses

No abstract provided.


A System For Measuring Radiation Induced Chemical Products In Atmospheric Gases Using Optical Detection Methods, Tyler Webster Reese Dec 2010

A System For Measuring Radiation Induced Chemical Products In Atmospheric Gases Using Optical Detection Methods, Tyler Webster Reese

Master's Theses

This research is a part of an effort to characterize the chemical products generated by radiation interacting with atmosphere. One method of detecting ionizing radiation is to monitor the radiation induced products in the atmosphere around the source. This project explored the potential for using Cavity Ringdown Spectroscopy to evaluate the presence of chemical products generated by the air-radiation interaction near an alpha radiation source. In particular, measurements of ozone concentration within a controlled atmosphere chamber as affected by radiation exposure were obtained.

The first portion of this thesis provides brief reviews of ionizing radiation and ozone formation as well …


A Study Of The Kinetics Of Light Induced Modulation Of Absorption In Zinc Selenide, Herbert Seth Berman Apr 1972

A Study Of The Kinetics Of Light Induced Modulation Of Absorption In Zinc Selenide, Herbert Seth Berman

Master's Theses

No abstract provided.