Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 46

Full-Text Articles in Entire DC Network

Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan Jan 2023

Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan

MSU Graduate Theses

The interatomic potentials designed for binary/high entropy diborides and ultra-high temperature composites (UHTC) have been developed through the implementation of deep neural network (DNN) algorithms. These algorithms employed two different approaches and corresponding codes; 1) strictly local & invariant scalar-based descriptors as implemented in the DEEPMD code and 2) equivariant tensor-based descriptors as included in the ALLEGRO code. The samples for training and validation sets of the forces, energy, and virial data were obtained from the ab-initio molecular dynamics (AIMD) simulations and Density Functional Theory (DFT) calculations, including the simulation data from the ultra-high temperature region (> 2000K). The study …


Machine Learning Strategies For Potential Development In High-Entropy Driven Nickel-Based Superalloys, Marium Mostafiz Mou Jan 2023

Machine Learning Strategies For Potential Development In High-Entropy Driven Nickel-Based Superalloys, Marium Mostafiz Mou

MSU Graduate Theses

In this study, I developed Deep Learning interatomic potentials to model a multi-phase and multi-component system of Ni-based Superalloys. The system has up to three major phase constituents, namely Gamma, Gamma Prime, and Transition-metal rich Carbide. I utilized invariant scalar-based and/or equivariant, tensor-based neural network (NN) approach as implemented in DEEPMD, NEQUIP/ALLEGRO codes, respectively, and Moment Tensor Potential (MTP). For the training and validation sets, I employed the ab-initio molecular dynamics (AIMD) trajectory results and ground state DFT calculations, including the energy, force, and virial database from highly diverse compositions, temperatures, and pressures following a “High Entropy Strategy.” The Deep …


Simulation And Fabrication Of All Oxide-Based Ito/Tio2/Cuo/Au Heterostructure For Solar Cell Applications, Sajal Islam Dec 2021

Simulation And Fabrication Of All Oxide-Based Ito/Tio2/Cuo/Au Heterostructure For Solar Cell Applications, Sajal Islam

MSU Graduate Theses

Oxide heterostructures have drawn great attention lately, due to their environment-friendly properties and potential applications in optoelectronic devices. In this work, a simulation study of a heterojunction solar cell was performed with SCAPS (a solar cell simulator) using TiO2 as an n-type and CuO as a p-type layer. The thickness and the dopant-dependent simulations have shown that the solar cell operates at a maximum efficiency of 19.2% when the thickness of the TiO2/CuO layers is chosen 1.4µm/1.2µm compared to the 11.5% efficiency when FTO is replaced with ITO. An indium-doped tin oxide (ITO) vs fluorine-doped tin oxide (FTO) comparison study …


Pulsed Laser Annealing On The Optoelectronic Properties Of Zno Thin Films, Md Abu Zobair Dec 2021

Pulsed Laser Annealing On The Optoelectronic Properties Of Zno Thin Films, Md Abu Zobair

MSU Graduate Theses

ZnO thin films have attracted great attention recently due to their unique electronic and optical properties. However, for proper implementation of ZnO in electronic devices it is necessary to understand the role of native point defects present inside the material as these wide bandgap semiconductors are inherently n-type due to oxygen vacancies. The objective is to control the electronic and optical properties of ZnO thin films through pulsed laser annealing (PLA). Thin films of ZnO have been grown on different substrates using pulsed laser deposition. Then PLA of the films are done by changing laser parameters (energy, frequency, pulse width, …


Development Of Eam And Rf-Meam Interatomic Potential For Zirconium Diboride, Bikash Timalsina Aug 2021

Development Of Eam And Rf-Meam Interatomic Potential For Zirconium Diboride, Bikash Timalsina

MSU Graduate Theses

Embedded Atom Method (EAM) and Modified-EAM (MEAM) interatomic potentials were developed for zirconium diboride (ZrB2). The EAM and “Reference Free” (RF) version of the Modified Embedded Atom Method (RFMEAM) potentials have been fitted by utilizing Density Functional Theory (DFT)-based datasets including lattice deformations and high-temperature ab-initio molecular dynamics (AIMD) simulation results. The occupancies of phonons for acoustic phonon modes from the density functional theory calculation shows that these modes of vibration, mostly due to heavier mass element (Zr), which occur below 8.711 THz, while a slight underestimation to that of DFT calculation predicted by EAM below 8.439 THz …


Development Of A Laser-Assisted Chemical Vapor Deposition (Cvd) Technique To Grow Carbon-Based Materials, Abiodun Ademola Odusanya May 2021

Development Of A Laser-Assisted Chemical Vapor Deposition (Cvd) Technique To Grow Carbon-Based Materials, Abiodun Ademola Odusanya

MSU Graduate Theses

Carbon-based materials (CBMs) including graphene, carbon nanotubes (CNT), highly ordered pyrolytic graphite (HOPG), and pyrolytic carbon (PyC) have gained so much attention in research in recent years because of their unique electronic, optical, thermal, and mechanical properties. CBMs are relatively very stable and have minimal environmental footprint. Various techniques such as mechanical exfoliation, pulsed laser deposition, and chemical vapor deposition (CVD) have been used to grow CBMs and among them thermal CVD is the most common. This study aims to explore ways of reducing the energy requirement to produce CBMs, and for that, a novel pulsed laser-assisted CVD technique had …


Design, Discovery, And Characterization Of Single Crystals Of A Topological Semimetal Using A Self-Flux Method, Sudha Krishnan Dec 2020

Design, Discovery, And Characterization Of Single Crystals Of A Topological Semimetal Using A Self-Flux Method, Sudha Krishnan

MSU Graduate Theses

Realization of topological semimetals in the recent past show that ternary intermetallics can exhibit topological phases. This discovery initiated the quest for this novel research. There is a crucial need to discover new materials that manifest these phases for a better understanding of their behavior to utilize them in device technology. Also, Bi compounds have attracted much attention as candidates for topological materials and topological superconductors. In this context, synthesis and characterization of single crystals of a layered transition metal pnictide SmMnBi2, a potential Dirac topological semimetal candidate, is reported. A flux method was utilized to synthesize single crystals of …


Raman Spectroscopic Investigation Of The Speciation Of Uranyl (Vi) And Thorium (Iv) Ions In Chloride-Bearing Aqueous Solutions Under Hydrothermal Conditions, Nadib Akram Dec 2020

Raman Spectroscopic Investigation Of The Speciation Of Uranyl (Vi) And Thorium (Iv) Ions In Chloride-Bearing Aqueous Solutions Under Hydrothermal Conditions, Nadib Akram

MSU Graduate Theses

Raman spectra were acquired for a uranyl chloride aqueous solution at temperatures ranging from 25°C to 500°C at the chloride concentration of 6M and uranium (vi) concentration of 0.05M. The measurements were taken by sealing the sample in a hydrothermal diamond anvil cell (HDAC) which enabled spectra acquisition at non-ambient conditions. The pressure inside the cell was measured by estimating the liquid-vapor homogenization temperature (TH) and using the isochoric equation of state diagram of water. The acquired spectra were then fitted to determine the speciation distribution of the various uranyl chloride species for the mentioned concentration. The developed …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Synthesis Of Novel Coo/Mnfe2o4 Heterostructured Nanoparticles And The Effects Of Variable Size And Extent Of Overgrowth On Their Magnetic Properties, Mohammad Tauhidul Islam Dec 2020

Synthesis Of Novel Coo/Mnfe2o4 Heterostructured Nanoparticles And The Effects Of Variable Size And Extent Of Overgrowth On Their Magnetic Properties, Mohammad Tauhidul Islam

MSU Graduate Theses

A combination of thermal decomposition and surfactant-assisted synthesis route was utilized to synthesize novel CoO/MnFe2O4 heterostructured nanoparticles. Four samples of varying CoO core size were synthesized with variable extent of overgrowth phase. XRD, XPS, SEM and TEM data show evidence of MnFe2O4 spinel phase overgrowth on CoO rock-salt structured nanoparticles. XPS and magnetic data reveal partial oxidation and formation of Co3O4 phase on 7 nm and 19 nm size CoO-based nanoparticles. The remaining samples having 22 nm and 34 nm dimensions show a higher percentage of FiM materials overgrowth on the …


Development Of A Cvd Assisted Pld System For Growing Novel Materials, Sinjan Majumder Aug 2020

Development Of A Cvd Assisted Pld System For Growing Novel Materials, Sinjan Majumder

MSU Graduate Theses

The fundamental step for development of novel materials like semiconductors involves stacking of layers of thin films of materials with desired properties on a particular substrate. In order to study the properties of these materials for research purposes in the laboratory, development of a clean fabrication technique is essential. PLD is a technique employed for growing thin films using laser ablation of a target material. CVD is an alternate method used to deposit solid materials from a gaseous phase. However, combining these two techniques can enhance plume, gas and laser interaction to facilitate the growth of novel materials with new …


The Structural And Magnetic Properties Of Nio/Mn(Ni)-Oxide Magnetic Heterostructured Nanocrystals Synthesized Under Varying Ph Values, Abdullah Al Shafe Aug 2020

The Structural And Magnetic Properties Of Nio/Mn(Ni)-Oxide Magnetic Heterostructured Nanocrystals Synthesized Under Varying Ph Values, Abdullah Al Shafe

MSU Graduate Theses

The role of pH on the structural, morphological, and magnetic properties of hydrothermally synthesized NiO-based magnetic heterostructured nanocrystals (MHNCs) is investigated. The NiO nanocrystals were synthesized using a two-step thermal decomposition process whereas the deposition of the surrounding Mn-based phases was accomplished by hydrothermal means at pH values ranging from 2.4 to 7.0. The resulting heterostructured nanocrystals consist of inverted AFM-FiM NiO/±MnxNi1-xO/±Mn3O4 bimagnetic/trimagnetic systems. A complete characterization of the MHNCs was carried using XRD, TEM, EDS, MPMS magnetometry and XPS analysis. Structural investigations revealed predominantly faceted MHNCs ranging in size from 24-30 nm …


Performance Of Pld Grown Zno Thin Film As A Thin Film Transistor, Shahidul Asif Aug 2020

Performance Of Pld Grown Zno Thin Film As A Thin Film Transistor, Shahidul Asif

MSU Graduate Theses

The performance of ZnO thin film (grown in different parameters) as a thin film transistor (TFT) is the focus of this study. ZnO is renowned for being n-type semiconductor naturally which was utilized in fabricating a thin film transistor here. This thesis is compared the performance of ZnO thin film transistor by growing the thin film using pulsed laser deposition (PLD) on two slightly different substrates at different temperatures in an optimal 0.1 milli bar oxygen pressure which was later analyzed using other material characterization methods. The substrates were both Si (100) but had different resistivity due to different amount …


Ractive Md Simulation On The Formation Of Amorphous Alumina Layer Using Atomic Layer Deposition (Ald), Yuxuan Lu Aug 2020

Ractive Md Simulation On The Formation Of Amorphous Alumina Layer Using Atomic Layer Deposition (Ald), Yuxuan Lu

MSU Graduate Theses

In this study, a systematic study has been performed by using the large-scale classical reactive molecular dynamics (MD) simulations to model the Atomic Layer Deposition (ALD) processes that generated tan ultra-thin and sub-nano meter amorphous alumina. The ALD process employed both water pulse and (Trimethyl-Aluminum) TMA precursors deposited onto the surface of an aluminum wetting layer. The study varied the sizes of the substrate and the concentrations of water/hydroxide precursors with a range of operating temperature to design the most favorable configurations for the subsequent TMA precursors to add onto. The role of crystallographic orientation of the Al wetting layer …


Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka Dec 2019

Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka

MSU Graduate Theses

We present a computational study of amorphous boron carbide (a-BxC) models using Molecular Dynamics (MD) studied with Stillinger-Weber (SW) and ReaxFF potential. The atomic structure factor (S(Q)), radial distribution function (RDF) and bond lengths comparison with other experimental and ab initio models shows that a random arrangement of icosahedra (B12, B11C) interconnected by chains (CCC, CBC) are present in a-BxC. Afterward, Hybrid Reverse Monte Carlo (HRMC) technique is used to recreate a-BxC structures. The existing SW potential parameters of Boron are optimized for the α-rhombohedral (Icosahedral B12 …


Synthesis Of Amorphous Hydrogenated Boron Carbide From Orthocarborane Using Argon Bombardment: A Reaxff Molecular Dynamics Study, Nirmal Baishnab Aug 2019

Synthesis Of Amorphous Hydrogenated Boron Carbide From Orthocarborane Using Argon Bombardment: A Reaxff Molecular Dynamics Study, Nirmal Baishnab

MSU Graduate Theses

In this study, the synthesis process of a-B­xC:Hy using argon bombardment from the orthocarborane precursor was modeled by using reactive molecular dynamics (MD). Utilizing the MD simulations, the formation of free radicals as a result of ion bombardment was identified and quantified. Then, the densification process that is aided by the mixture of free radicals and orthocarborane was analyzed. The densification process by creating the initial structure composed of free radicals and orthocarborane with active sites created by partially removing some of the hydrogen atoms from the icosahedral cage was also modelled. Overall, a better understanding of …


Structure And Properties Of Zno-Zns Heterostructures, Sanchali Das Aug 2019

Structure And Properties Of Zno-Zns Heterostructures, Sanchali Das

MSU Graduate Theses

Heterostructures consisting of at least two layers of dissimilar materials have always been well studied due to potential applications in nano-electronic and optoelectronic devices. In this study, I have investigated the structural and physical properties of zinc oxide -zinc sulfide (ZnO-ZnS) based heterostructures of thin films and core-shell nanoparticles. Pulsed laser deposition technique was employed to grow ZnO thin film on sapphire substrate. ZnO-ZnS heterostructures were obtained using hydrothermal synthesis where thiourea has served as a precursor solution for the source of sulfur. X-ray diffraction analysis on the parent and the sulfidized samples gives the information about the crystallinity and …


Development Of Multicomponent Eam Potential For Ni-Based Superalloy, Muztoba Rabbani Jan 2019

Development Of Multicomponent Eam Potential For Ni-Based Superalloy, Muztoba Rabbani

MSU Graduate Theses

We initiated the development of multi-component EAM potentials for Aluminides and Carbides, key phases in Ni-based Superalloys. The goal is to utilize the MD simulation to understand the deformation dynamics that contribute to the formation of voids and creep initiation. For this purpose, we constructed the raw data from ab-initio (molecular dynamics) MD simulations fed into the potential development code and used Nickel as the base metal with the addition of a number of various elements including Aluminum, Chromium, Tungsten. We then developed the EAM potentials for the aluminide and carbide phases using the force-fitting code MEAMfit. Our generated potential …


Molecular Dynamics Study Of Creep Deformation In Nickel-Based Superalloy, Sabila Kader Pinky Jan 2019

Molecular Dynamics Study Of Creep Deformation In Nickel-Based Superalloy, Sabila Kader Pinky

MSU Graduate Theses

The present study employs molecular dynamics simulations of Ni-based superalloy to investigate the creep behavior under uniaxial compression test. Dislocation dynamics is analyzed for the nickel-based single crystal superalloy with the presence of void and with varying the distribution of gamma-prime phase The results show that multiple-void systems are more prone to yield than single-void systems and single-void systems are more prone to yield than the system without void. From the simulations, it has been determined that the creep mechanism in Ni/Ni3Al is subject to change on the applied stress depending on the distribution of gamma-prime phases change. Dislocation behavior …


Investigations On Hydrothermally Synthesized Co3o4/Mnxco3-Xo4 Core-Shell Nanoparticles, Ning Bian Aug 2018

Investigations On Hydrothermally Synthesized Co3o4/Mnxco3-Xo4 Core-Shell Nanoparticles, Ning Bian

MSU Graduate Theses

Two different morphologies (pseudo-spherical shaped or PS type and hexagonal nanoplate shaped or NP type) and two different concentrations (0.07 M and 0.1 M) of manganese incorporated Co3O4@MnxCo3-xO4 core-shell nanoparticles (CSNs) were investigated, respectively. The motivation of this work is to investigate the magnetic properties of, and specifically the exchange bias, between different shaped CSNs and between different Mn-doped CSNs. A two-step synthesis method was utilized to obtain the CSNs: a soft chemical approach was used to obtain Co3O4 nanoparticles and a hydrothermal nano-phase epitaxy was used to …


Application Of Nano-Plasmonics For Sers Bio-Detection And Photocatalysis In The Same Platform, Muhammad R. Shattique Aug 2018

Application Of Nano-Plasmonics For Sers Bio-Detection And Photocatalysis In The Same Platform, Muhammad R. Shattique

MSU Graduate Theses

Nano-biological systems interfacing nano-structured solid surfaces with biological compounds such as oligonucleotides or proteins are highly regarded as enabling materials for biosensing and biocatalysis applications. In particular, nanostructures of noble metals such as gold or silver, when exposed to light, exhibit a phenomenon known as surface plasmon resonance. When a proper metal nanostructure (plasmonic substrate) is exposed to light, very efficient absorption of incoming photons is possible, resulting in a buildup of localized high-energy regions, or “hot-spots”, where energetic carriers or “hot carriers” can be created. These hot-carriers can be used to catalyze desired chemical transformations in materials located nearby. …


Magnetic Studies Of Multiferroic Heterostructures, Ahmed Rayhan Mahbub May 2018

Magnetic Studies Of Multiferroic Heterostructures, Ahmed Rayhan Mahbub

MSU Graduate Theses

Multiferroic heterostructures (MHS) consisting of at least two materials with ferroic properties have been a major focus for researchers recently due to its immense potential in device applications. Almost all MHS use ferromagnetic layers making it a very important research area. In this thesis the magnetic properties of different ferromagnetic heterostructures have been investigated. Different bilayers of hard ferromagnet cobalt ferrite (CFO)-soft ferromagnet lanthanum strontium manganese oxide (LSMO) and hard ferromagnet CFO-antiferromagnet nickel oxide (NiO) were fabricated. Pulsed laser deposition technique was used to deposit the thin films on LAO and sapphire substrates. Purpose of using a hard ferromagnetic CFO …


Block Copolymer Nanostructures For Inorganic Oxide Nanopatterning, Krishna Pandey Dec 2017

Block Copolymer Nanostructures For Inorganic Oxide Nanopatterning, Krishna Pandey

MSU Graduate Theses

Self-assembled nature of block copolymer (BCP) makes them ideal for emerging technologies in nanometer scale. The micro phase separation between two or more dissimilar polymer blocks of BCP leads to uniform periodic nanostructures of different domains of dimension in the range of 5-100 nm, good for the development of emerging microelectronic and optoelectronics devices. Molecular weight and chain architecture of each blocks govern the morphology evolution; gives different structure like spherical, micelles, lamellae, cylindrical, gyroid etc. The morphology evolution of BCP nanostructure also depends on different external factors as well. In the first work of this thesis, three external factors …


A Study Of Manganese And Cobalt Incorporated Nickel Oxide Based Core-Shell Magnetic Nanoparticles, Samiul Hasan Dec 2017

A Study Of Manganese And Cobalt Incorporated Nickel Oxide Based Core-Shell Magnetic Nanoparticles, Samiul Hasan

MSU Graduate Theses

The synthesis along with the structural and magnetic properties of manganese (Mn) and cobalt (Co) -incorporated nickel oxide (NiO) inverted core-shell nanoparticles (CSNs) were investigated. The primary objective of this study was to determine the effect of substitution of nickel (Ni) by transition metal ions (Mn2+/Co2+) in affecting the magnetic properties of the resultant CSNs. The core of the CSNs is comprised of NiO and the shell constitutes a Nix(Mn/Co)1-xO phase. The synthesis of the CSNs was accomplished in two steps: first, NiO nanoparticles were synthesized using a thermal decomposition method. In …


Study Of Iron Ion Transit Through Three-Fold Channel Of Ferritin Cage, Shah Alam Limon Aug 2017

Study Of Iron Ion Transit Through Three-Fold Channel Of Ferritin Cage, Shah Alam Limon

MSU Graduate Theses

Ferritin is an iron-storage globular protein with an ability to uptake, mineralize and release iron ions in a controllable manner. The globular hollow shell allows storage of mineralized iron, with several channels responsible for the transit of ions into the shell and out of it. Understanding of the detailed molecular functioning of ferritin is required for rational design of biomimetic conjugate nano-biosystems containing ferritin-like constituents. In this work, ferritin was investigated both numerically by all-atom molecular dynamics (MD) simulations, and experimentally by Raman spectroscopy. Molecular dynamic simulations of a model system comprising iron ions (Fe2+) and a ferritin trimer expressing …


Experimental And Theoretical Study Of Vapor Phase Species Above Hot Rocky Exoplanet Analogues, Michal Bulak May 2017

Experimental And Theoretical Study Of Vapor Phase Species Above Hot Rocky Exoplanet Analogues, Michal Bulak

MSU Graduate Theses

With the James Webb Space Telescope and other space-based missions launching in the next few years, the astrophysics community awaits an exciting time. This work is an answer to a call for the laboratory contributions necessary to analyze the data of unprecedented accuracy. I performed a laboratory analysis of an analogue of a hot super earth atmosphere. This type of an extra solar planet has a rocky composition and has extremely high temperature (from 1500˚C – 5000˚C). I performed infrared spectroscopy on the gas phase vapor above a mixture of two binary systems: SiO2 with Al2O3 and CaO with SiO2. …


Multifunctional Transition Metal Oxide Core Shell Magnetic Nanoparticles, Mahmud Reaz May 2017

Multifunctional Transition Metal Oxide Core Shell Magnetic Nanoparticles, Mahmud Reaz

MSU Graduate Theses

Oxide core-shell nanoparticles (CSNPs) have attracted considerable interest for their multifunctional properties. Luminescent ZnO, ferroelectric BaTiO3, and inverse spinel iron oxide can be exploited to develop magneto-luminescent and multiferroic nanomaterials. The novel sonochemical method has been used to synthesize the nanomaterials. Atomic-scale spectroscopy establishes the core-shell nature and multifunctional properties of the nanomaterials. Magnetic hysteresis (coercivity, remnant, and saturation magnetization) and temperature dependent data indicate the key structural difference between the oxidized and reduced ZnO/iron oxide CSNPs. Variation in the coercive field and remnant and saturation magnetization further confirms the presence of different iron oxides in the shell region. Temperature …


Application Of Raman Spectroscopy To Study Of Biological Systems, Neva Agarwala May 2017

Application Of Raman Spectroscopy To Study Of Biological Systems, Neva Agarwala

MSU Graduate Theses

Raman spectroscopy is an important tool of molecular characterization based on inelastic scattering of monochromatic light by molecules. Since Raman spectra reflect unique vibrational properties of materials, the method offers a potential of selective molecular identification. Furthermore, surface-enhanced Raman spectroscopy (SERS) also is capable of a high sensitivity, since inelastic scattering of light from the molecules is strongly enhanced when Raman-active molecules are located close to roughened noble metal surfaces. In this thesis, Raman characterization protocols of liquid biological samples are optimized. Raman spectra of two different cell cultures, yeast cells and HeLa cells, were collected and interpreted. The potentiality …


Development Of Many-Body Potential For Deformation Study In Al-Tin Nanolayered Composites, Paul Yaohan Simanjuntak May 2017

Development Of Many-Body Potential For Deformation Study In Al-Tin Nanolayered Composites, Paul Yaohan Simanjuntak

MSU Graduate Theses

A novel interatomic potential of ternary Al-Ti-N has been developed to study the deformation behavior of Al-TiN nanolaminates. The ternary nanolayered Al-TiN composite has attracted a lot of interest due to its combination of strength and ductility. The current analysis on the system has been primarily concentrated on continuum models which are inadequate to explain the key deformation events such as nucleation and interaction of dislocations. Progress in the preferred atomistic approach has been hampered however by the lack of available interatomic potential optimized for the ternary system. I developed a many-body potential based on embedded atomic model (EAM) by …


Investigations Of Pld Grown Tungsten Oxide Thin Films, Anthony Thomas Pelton May 2017

Investigations Of Pld Grown Tungsten Oxide Thin Films, Anthony Thomas Pelton

MSU Graduate Theses

Pulsed laser deposition (PLD) is a promising technique for creating inexpensive,nanostructured thin films which may lead to structures suitable for photocatalysis. During this study, multiple tungsten oxide thin films were prepared using two types of PLD techniques. The first method was conducted at US Photonics, Springfield, MO, using a femtosecond laser while the second method relied on use of an excimer (nanosecond) laser located at Missouri State University. Films were first deposited on glass using both methods at room temperature. Further study was conducted on thin films deposited on sapphire and silicon deposited at room temperatures and at elevated temperatures. …