Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 44

Full-Text Articles in Entire DC Network

Application Of Silicon Nanohair Textured P-N Junctions In A Photovoltaic Device, Michael Small Dec 2018

Application Of Silicon Nanohair Textured P-N Junctions In A Photovoltaic Device, Michael Small

Electronic Theses and Dissertations

The goal of this project is to design and develop a fabrication process for a silicon photovoltaic device which incorporates a nanohair textured p-n junction. The silicon nanowires are etched into a silicon wafer, comprising an epitaxial p-layer on n-substrate, via metal-assisted chemical etching (MACE). The resulting nanowires contain p-n junctions that lie along the length of the vertical nanowires. This construct has the potential to increase the optical bandwidth of a silicon photovoltaic device by allowing a greater amount of short wavelength light to reach the junction. In addition, the MACE method of nanofabrication has the potential for decreasing …


Innate Immunity, The Hepatic Extracellular Matrix, And Liver Injury: Mathematical Modeling Of Metastatic Potential And Tumor Development In Alcoholic Liver Disease., Shanice V. Hudson Dec 2018

Innate Immunity, The Hepatic Extracellular Matrix, And Liver Injury: Mathematical Modeling Of Metastatic Potential And Tumor Development In Alcoholic Liver Disease., Shanice V. Hudson

Electronic Theses and Dissertations

The overarching goals of the current work are to fill key gaps in the current understanding of alcohol consumption and the risk of metastasis to the liver. Considering the evidence this research group has compiled confirming that the hepatic matrisome responds dynamically to injury, an altered extracellular matrix (ECM) profile appears to be a key feature of pre-fibrotic inflammatory injury in the liver. This group has demonstrated that the hepatic ECM responds dynamically to alcohol exposure, in particular, sensitizing the liver to LPS-induced inflammatory damage. Although the study of alcohol in its role as a contributing factor to oncogenesis and …


Three-Dimensional Bedrock Channel Evolution With Smoothed Particle Hydrodynamics, Nick Richmond Dec 2018

Three-Dimensional Bedrock Channel Evolution With Smoothed Particle Hydrodynamics, Nick Richmond

Electronic Theses and Dissertations

Bedrock channels are responsible for balancing and communicating tectonic and climatic signals across landscapes, but it is difficult and dangerous to observe and measure the flows responsible for removing weakly-attached blocks of bedrock from the channel boundary. Consequently, quantitative descriptions of the dynamics of bedrock removal are scarce. Detailed numerical simulation of violent flows in three dimensions has been historically challenging due to technological limitations, but advances in computational fluid dynamics aided by high-performance computing have made it practical to generate approximate solutions to the governing equations of fluid dynamics. From these numerical solutions we gain detailed knowledge of the …


Computational Prediction, Characterization, And Methodology Development For Two-Dimensional Nanostructures: Phosphorene And Phosphide Binary Compounds., Congyan Zhang Dec 2018

Computational Prediction, Characterization, And Methodology Development For Two-Dimensional Nanostructures: Phosphorene And Phosphide Binary Compounds., Congyan Zhang

Electronic Theses and Dissertations

In this thesis, a comprehensive computational simulation was carried out for predicting, characterizing, and applications of two-dimensional (2D) materials. The newly discovered GaP and InP layers were selected as an example to demonstrate how to explore new 2D materials using computational simulations. The performance of phosphorene as the anode material of Lithium-ion battery was discussed as the example of the application of 2D material. Furthermore, the semi-empirical Hamiltonian for phosphorous and lithium elements have been developed for our future work on the application of phosphorus and lithium-based systems. The novel 2D materials of GaP and InP binary compounds were found …


Structure And Thermodynamics Of Polyglutamine Peptides And Amyloid Fibrils Via Metadynamics And Molecular Dynamics Simulations, Riley Workman Aug 2018

Structure And Thermodynamics Of Polyglutamine Peptides And Amyloid Fibrils Via Metadynamics And Molecular Dynamics Simulations, Riley Workman

Electronic Theses and Dissertations

Aggregation of polyglutamine (polyQ)-rich polypeptides in neurons is a marker for nine neurodegenerative diseases. The molecular process responsible for the formation of polyQ fibrils is not well understood and represents a growing area of study. To enable development of treatments that could interfere with aggregation of polyQ peptides, it is crucial to understand the molecular mechanisms by which polyQ peptides aggregate into fibrils. Many experimental techniques have been employed to probe polyQ aggregation, however, observations from these studies have not lead to a unified understanding of the properties of these systems, instead yielding competing, fragmented theories of polyQ aggregation. This …


Room Temperature Operation Of Quantum Cascade Lasers Monolithically Integrated Onto A Lattice-Mismatched Substrate, Rowel Go Aug 2018

Room Temperature Operation Of Quantum Cascade Lasers Monolithically Integrated Onto A Lattice-Mismatched Substrate, Rowel Go

Electronic Theses and Dissertations

Quantum Cascade Lasers (QCLs) are semiconductor devices that, currently, have been observed to emit radiation from ~ 2.6 μm to 250 μm (1 to 100 terahertz range of frequencies.) They have established themselves as the laser of choice for spectroscopic gas sensing in the mid-wavelength infrared (3-8 μm) and long-wavelength infrared (8-15 μm) region. In the 4-12 μm wavelength region, the highest performing QCL devices, in terms of wall-plug efficiency and continuous wave operation, are indium phosphide (InP) based. The ultimate goal is to incorporate this InP-based QCL technology to silicon (Si) substrate since most opto-electronics are Si-based. The main …


Developing A Femtosecond Stimulated Raman Spectroscopy Experiment For Solid State Materials, Daniel Hammerland Aug 2018

Developing A Femtosecond Stimulated Raman Spectroscopy Experiment For Solid State Materials, Daniel Hammerland

Electronic Theses and Dissertations

Femtosecond Stimulated Raman Spectroscopy (FSRS) is a ultrafast spectroscopy technique first implemented by chemists to understand isomerization and other ultrafast molecular morphology changes by resolving vibrational dynamics[1, 2, 3]. FSRS has an unparalleled temporal and spectral resolution [4, 1, 5, 6] that arises as a result of a clever combination of picosecond and femtosecond pulses. However, despite this capability, FSRS has yet to be applied to modern materials in condensed matter physics. This thesis explores the design and implementation of FSRS to study two-dimensional materials in order to measure their quantum confined vibrational dynamics on utlrafast time scales.


Plasma Based Synthesis And Surface Modification Of Graphene., Rong Zhao Aug 2018

Plasma Based Synthesis And Surface Modification Of Graphene., Rong Zhao

Electronic Theses and Dissertations

Graphene, an atom thick layer of carbon, has attracted intense scientific interest due to its exceptional electrical, mechanical and chemical properties. Especially, it provides a perfect platform to explore the unique electronic properties in absolute two-dimension. Pristine graphene possesses zero band gap and weakens its competitiveness in the field of semiconductors. In order to induce a band gap and control its semiconducting properties, functionalization and doping are two of the most feasible methods. In the context of functionalization, large area monolayer graphene synthesized by chemical vapor deposition was subjected to controlled and sequential fluorination using radio frequency plasma while monitoring …


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed …


Investigating Student Understanding Of Vector Calculus In Upper-Division Electricity And Magnetism: Construction And Determination Of Differential Element In Non-Cartesian Coordinate Systems, Benjamin Schermerhorn May 2018

Investigating Student Understanding Of Vector Calculus In Upper-Division Electricity And Magnetism: Construction And Determination Of Differential Element In Non-Cartesian Coordinate Systems, Benjamin Schermerhorn

Electronic Theses and Dissertations

Differential length, area, and volume elements appear ubiquitously over the course of upper-division electricity and magnetism (E&M), used to sum the effects of or determine expressions for electric or magnetic fields. Given the plethora of tasks with spherical and cylindrical symmetry, non-Cartesian coordinates are commonly used, which include scaling factors as coefficients for the differential terms to account for the curvature of space. Furthermore, the application to vector fields means differential lengths and areas are vector quantities. So far, little of the education research in E&M has explored student understanding and construction of the non-Cartesian differential elements used in applications …


Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay May 2018

Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay

Electronic Theses and Dissertations

High-temperature, harsh-environment static and dynamic strain sensors are needed for industrial process monitoring and control, fault detection, structural health monitoring in power plant environments, steel and refractory material manufacturing, aerospace, and defense applications. Sensor operation in the aforementioned extreme environments require robust devices capable of sustaining the targeted high temperatures, while maintaining a stable sensor response. Current technologies face challenges regarding device or system size, complexity, operational temperature, or stability.

Surface acoustic wave (SAW) sensor technology using high temperature capable piezoelectric substrates and thin film technology has favorable properties such as robustness; miniature size; capability of mass production; reduced installation …


Photonic Tools For Advanced Sensing And Imaging At The Nanoscale., Jafar Hamed Ghithan May 2018

Photonic Tools For Advanced Sensing And Imaging At The Nanoscale., Jafar Hamed Ghithan

Electronic Theses and Dissertations

This dissertation reports a novel bio-sensing strategy based on single-mode, electro-active, integrated optical waveguide (SM-EA-IOW) platforms. It also reports the development of a super-resolved far-field optical imaging tool to enable optical, electronic, and spectroelectrochemical investigations at the nanoscale. SM-EA-IOW platforms with its outstanding sensitivity for spectroelectrochemical interrogation was combined with a sandwich bioassay for the development of a novel immunosensing based strategy for label-free detection of infectious pathogens. The strategy begins with the functionalization of the electroactive waveguide surface with a capturing antibody aimed at a specific target analyte. Once the target analyte is bound to the photonic interface, it …


Surface Reaction And Diffusion Kinetics In Semiconducting Metal Oxide Film Gas Sensors, Aravind Reghu May 2018

Surface Reaction And Diffusion Kinetics In Semiconducting Metal Oxide Film Gas Sensors, Aravind Reghu

Electronic Theses and Dissertations

Chemiresistive metal oxide gas sensors based on materials such as SnO2, ZnO, and TiO2, have been investigated extensively by many researchers for a wide range of applications. The band bending model, based on the surface chemistry of highly reactive ionosorbed species (O2- or O-) and the semiconducting material properties of SnO2, TiO2 and ZnO, adequately predicts the dependence of the change in sensor conductivity (Δσ) as a function of target gas pressure and temperature. However, the band bending model is not applicable to gas sensors based on reducible oxides …


Echoes Of The Past: The Effect Of Background Experience On Far Transfer, Graham H. Hummel-Hall May 2018

Echoes Of The Past: The Effect Of Background Experience On Far Transfer, Graham H. Hummel-Hall

Electronic Theses and Dissertations

Far transfer is the application of knowledge learned in one setting to a problem in a very different setting. This multi-method study looked at far transfer in humans and whether it could be facilitated, inhibited, or remain unaffected by the number of courses or years a student at a university spent learning about the subject matter of the knowledge being transferred. Through quantitative and qualitative analysis of pretest and post-test data from an introductory undergraduate earth science course, I found that students with more physical science background experience more frequently engaged in successful and accurate transfer of physics information to …


Impact Of Ionizing Radiation And Electron Injection On Carrier Transport Properties In Narrow And Wide Bandgap Semiconductors, Jonathan Lee Jan 2018

Impact Of Ionizing Radiation And Electron Injection On Carrier Transport Properties In Narrow And Wide Bandgap Semiconductors, Jonathan Lee

Electronic Theses and Dissertations

This study investigated the minority carrier properties of wide and narrow bandgap semiconductors. Included specifically are wide bandgap materials GaN and β-Ga2O3, and narrow bandgap InAs/GaSb type-II strain-layer superlattice. The importance of minority carrier behavior in bipolar device performance is utmost because it is the limiting component in current conduction. The techniques used to determine minority carrier properties include electron beam induced current (EBIC) and cathodoluminescence (CL) spectroscopy. The CL spectroscopy is complemented with time-resolved CL (TRCL) for direct measurement of carrier radiative recombination lifetime. The minority carrier properties and effect of high energy radiation is explored. The GaN TRCL …


Mathematical Foundations Of Adaptive Quantum Processing, Daniel Bonior Jan 2018

Mathematical Foundations Of Adaptive Quantum Processing, Daniel Bonior

Electronic Theses and Dissertations

Quantum information has the potential to revolutionize the way we store, process, transfer and acquire information [1,14,15,21,37]. In particular, quantum information offers exciting new approaches to secure communication, computation and sensing. However, in order to realize such technologies, we must first understand the effect that environmental noise has on a quantum system. This dissertation builds upon recent studies that have explored the underlying structure of quantum information and the effects of qubit channels in quantum communication protocols. This work is divided into five main chapters, with Chapter 1 being a brief introduction to quantum information. We then begin Chapter 2 …


Tuning Chemical And Optical Properties Of Nanomaterials: From Extended Surfaces To Finite Nanoclusters, Zahra Hooshmand Gharehbagh Jan 2018

Tuning Chemical And Optical Properties Of Nanomaterials: From Extended Surfaces To Finite Nanoclusters, Zahra Hooshmand Gharehbagh

Electronic Theses and Dissertations

Modifying the electronic and optical properties of surfaces and nanostructures are in the forefront of surface science. This dissertation's focus is on this problem. The first part is on the adsorption of functionalized naphthalene molecules on Cu(111) surface. The results show that changing the functional group results in modification of charge redistribution at the interface of molecule and surface and the electronic structure of Cu changes. The second part discusses the new Moire structure of h-BN on Rh(111) induced by intrinsic carbon impurities of Rh single crystals. We found that these impurities intercalate between h-BN and Rh(111) with new local …


Development Of A Tabletop Coherent Soft X-Ray Source, Hanfu Kong Jan 2018

Development Of A Tabletop Coherent Soft X-Ray Source, Hanfu Kong

Electronic Theses and Dissertations

The goal of this thesis is to design a tabletop coherent soft X-ray source for attosecond high resolution imaging. We collect signals from gas cells with different length and lens with different focal length. A spectrometer with a grating and a CCD camera is applied to observe and measure the spectrum of the X-ray attosecond pulses. This thesis first introduces the theory background of ultrafast lasers, then mainly explains high harmonic generation, which is the key method for attosecond pulses generation, subsequently presents the experiment system and analyzes the results from the experiment, also compares different combinations of parameters of …


Terahertz Emission From The Intrinsic Josephson Junctions Of High-Symmetry Thermally-Managed Bi2sr2cacu2o8+D Annular Microstrip Antennas, Sheila Bonnough Jan 2018

Terahertz Emission From The Intrinsic Josephson Junctions Of High-Symmetry Thermally-Managed Bi2sr2cacu2o8+D Annular Microstrip Antennas, Sheila Bonnough

Electronic Theses and Dissertations

The intrinsic Josephson junctions in the high transition temperature superconductor Bi2Sr2CaCu2O8+δ (BSCCO) have shown great potential for oscillators emitting in the terahertz frequency. The radiation frequency satisfies the conditions for both the ac Josephson effect and for a mesa cavity resonance mode. The observed angular dependence of the emissions from some mesa imply that the ac Josephson effect plays the primary role in a dual source radiation mechanism. But the integrated emission power had generally been significantly below the 1 mW level suitable for many applications. This output power can be enhanced by a suitable design of an array of …


Non-Hermitian Optics, Absar Ulhassan Jan 2018

Non-Hermitian Optics, Absar Ulhassan

Electronic Theses and Dissertations

From the viewpoint of quantum mechanics, a system must always be Hermitian since all its corresponding eigenvalues must be real. In contrast, the eigenvalues of open systems-unrestrained because of either decay or amplification-can be in general complex. Not so long ago, a certain class of non-Hermitian Hamiltonians was discovered that could have a completely real eigenvalue spectrum. This special class of Hamiltonians was found to respect the property of commutation with the parity-time (PT) operator. Translated into optics, this implies a balance between regions exhibiting gain and loss. Traditionally, loss has been perceived as a foe in optics and something …


Undergraduate Student Agreement With Reformed Introductory Physics Classes, Matthew Wilcox Jan 2018

Undergraduate Student Agreement With Reformed Introductory Physics Classes, Matthew Wilcox

Electronic Theses and Dissertations

In this study, I investigate student "buy-in", defined as students' proper understanding of and agreement with the class format, for introductory studio physics classes that incorporate lectures, labs, and group problem-solving activities into one interactive environment. I also investigate the ways in which instructors try to gain student buy-in to their class. Research has shown that student resistance to reformed instruction is a barrier to an instructor's use of research-based instructional strategies that are common to the studio class. Expectancy value theory suggests that by gaining student buy-in to the reformed class format, student resistance will decrease thus allowing a …


Power Scaling Of High Power Solid State Lasers., Bumjin Oh Jan 2018

Power Scaling Of High Power Solid State Lasers., Bumjin Oh

Electronic Theses and Dissertations

The solid-state laser is one of the most widely used lasers in scientific research and industrial applications. This thesis describes detailed investigations of two modern architectures of high power cw solid-state lasers, a 20 W diode-pumped Yb:YAG thin disc laser and 300 W diode-pumped Nd:YAG rod laser. With the thin disc laser architecture, the signal beam must fit to the pump area on the disc defined by the multi-pass diode pump configuration. The beam propagation, beam diameter, phase and thermal effects for various cavity configurations are investigated theoretically and experimentally. In addition, the internal loss, small signal gain, and thermal …


Dynamically Tunable Plasmonic Structural Color, Daniel Franklin Jan 2018

Dynamically Tunable Plasmonic Structural Color, Daniel Franklin

Electronic Theses and Dissertations

Functional surfaces which can control light across the electromagnetic spectrum are highly desirable. With the aid of advanced modeling and fabrication techniques, researchers have demonstrated surfaces with near arbitrary tailoring of reflected/transmitted amplitude, phase and polarization - the applications for which are diverse as light itself. These systems often comprise of structured metals and dielectrics that, when combined, manifest resonances dependent on structural dimensions. This attribute provides a convenient and direct path to arbitrarily engineer the surface's optical characteristics across many electromagnetic regimes. But while many of these plasmonic systems struggle to compete with the efficiency of pre-existing technologies, the …


Fiber Optimization For Operation Beyond Transverse Mode Instability Limitations, Joshua Bradford Jan 2018

Fiber Optimization For Operation Beyond Transverse Mode Instability Limitations, Joshua Bradford

Electronic Theses and Dissertations

Transverse Mode Instabilities (TMIs) stand as a fundamental limitation to power and brightness scaling in laser systems based upon optical fiber technologies. This work comprises experimental and theoretical investigations into fiber laser design that should minimize the effects of Stimulated Thermal Rayleigh Scattering. Theoretical discussions and simulations focus on how fiber parameters affect transverse mode coupling. These include core geometry optimization, pump geometry optimization, in addition to the effects of HOM content and losses on the TMI threshold. Experimentally, a high-power laser facility is commissioned with beam quality diagnostics to quantify the thresholds of the onset of modal interferences and …


From Excited Charge Dynamics To Cluster Diffusion: Development And Application Of Techniques Beyond Dft And Kmc, Shree Ram Acharya Jan 2018

From Excited Charge Dynamics To Cluster Diffusion: Development And Application Of Techniques Beyond Dft And Kmc, Shree Ram Acharya

Electronic Theses and Dissertations

This dissertation focuses on developing reliable and accurate computational techniques which enable the examination of static and dynamic properties of various activated phenomena using deterministic and stochastic approaches. To explore ultrafast electron dynamics in materials with strong electron-electron correlation, under the influence of a laser pulse, an ab initio electronic structure method based on time-dependent density functional theory (TDDFT) in combination with dynamical mean field theory (DMFT) is developed and applied to: 1) single-band Hubbard model; 2) multi-band metal Ni; and 3) multi-band insulator MnO. The ultrafast demagnetization in Ni reveal the importance of memory and correlation effects, leading to …


Investigating Compositional Variations Of S-Complex Near-Earth Asteroids: (1627) Ivar, Jenna Jones Jan 2018

Investigating Compositional Variations Of S-Complex Near-Earth Asteroids: (1627) Ivar, Jenna Jones

Electronic Theses and Dissertations

We seek to investigate the complexity and heterogeneity of the surfaces of near-Earth asteroids (NEAs). In particular, we are studying the S-complex NEAs, which account for a large portion of the observed near-Earth objects. Here we present our results for (1627) Ivar, an Amor class NEA with taxonomic type Sqw. In 2013, Ivar's large size and close approach to Earth (minimum distance 0.32 AU) provided an opportunity to observe the asteroid over many different viewing angles for an extended period of time. We collected delay-Doppler radar images and Doppler spectra using the Arecibo Observatory's 2380 MHz radar, and, by incorporating …


Electronic, Optical, And Magnetic Properties Of Graphene And Single-Layer Transition Metal Dichalcogenides In The Presence Of Defects, Mahtab Khan Jan 2018

Electronic, Optical, And Magnetic Properties Of Graphene And Single-Layer Transition Metal Dichalcogenides In The Presence Of Defects, Mahtab Khan

Electronic Theses and Dissertations

Two-dimensional (2D) materials, such as graphene and single-layer (SL) transition metal dichalcogenides (TMDCs), have attracted a lot of attention due to their fascinating electronic and optical properties. Graphene was the first 2D material that has successfully been exfoliated from bulk graphite in 2004. In graphene, charge carriers interacting with the honeycomb lattice of carbon atoms of graphene to appear as massless Dirac fermions. Massless quasiparticles with linear dispersion are also observed in surface states of 3D topological insulators and quantum Hall edge states. My first project deals with the two-dimensional Hong-Ou-Mandel (HOM) type interference experiment for massless Dirac fermions in …


Generation And Characterization Of Isolated Attosecond Pulse In The Soft X-Ray Regime, Jie Li Jan 2018

Generation And Characterization Of Isolated Attosecond Pulse In The Soft X-Ray Regime, Jie Li

Electronic Theses and Dissertations

The observation of any atomic and molecular dynamics requires a probe that has a timescale comparable to the dynamics itself. Ever since the invention of laser, the temporal duration of the laser pulse has been incrementally reduced from several nanoseconds to just attoseconds. Picosecond and femtosecond laser pulses have been widely used to study molecular rotation and vibration. In 2001, the first single isolated attosecond pulse (1 attosecond = 10^-18 seconds.) was demonstrated. Since this breakthrough, "attoscience" has become a hot topic in ultrafast physics. Attosecond pulses typically have span between EUV to X-ray photon energies and sub-femtosecond pulse duration. …


2 Micron Fiber Lasers: Power Scaling Concepts And Limitations, Alex Sincore Jan 2018

2 Micron Fiber Lasers: Power Scaling Concepts And Limitations, Alex Sincore

Electronic Theses and Dissertations

Thulium- and holmium-doped fiber lasers (TDF and HDF) emitting at 2 micron offer unique benefits and applications compared to common ytterbium-doped 1 micron lasers. This dissertation details the concepts, limitations, design, and performance of four 2 micron fiber laser systems. While these lasers were developed for various end-uses, they also provide further insight into two major power scaling limitations. The first limitation is optical nonlinearities: specifically stimulated Brillouin scattering (SBS) and modulation instability (MI). The second limitation is thermal failure due to inefficient pump conversion. First, a 21.5 W single-frequency, single-mode laser with adjustable output from continuous-wave to nanosecond pulses …


Single Mode Wavelength-Tunable Thulium Fiber, Dong Jin Shin Jan 2018

Single Mode Wavelength-Tunable Thulium Fiber, Dong Jin Shin

Electronic Theses and Dissertations

Thulium fiber lasers have the broadest emission wavelength bandwidth out of any rare-earth doped fiber lasers. The emission wavelength starts from 1.75μm and ends at around 2.15μm, covering a vast swath of the eye safe wavelength region and intersecting with a large portion of mid-infrared atmospheric transmission window. Also, thulium fiber lasers provide the highest average output power of any other rare-earth doped fiber lasers in these wavelength regimes, making them uniquely suited for applications such as remote sensing. At the moment, high power beam propagation of continuous wave laser through the atmosphere in the mid-infrared range is yet to …