Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 701

Full-Text Articles in Entire DC Network

Fabrication Of Two-Dimensional Material-Based Nano-Capacitors Using Bismuth Selenite (Bi2seo5) To Study Its Dielectric Properties, Major Kc May 2024

Fabrication Of Two-Dimensional Material-Based Nano-Capacitors Using Bismuth Selenite (Bi2seo5) To Study Its Dielectric Properties, Major Kc

McKelvey School of Engineering Theses & Dissertations

In recent years, the demand for high-performance micro and nanodevices has surged, necessitating the exploration of novel dielectric materials to replace conventional silicon dioxide. Following the continuation of the Moorse law, as device dimensions reduce to nanoscale levels, the properties of silicon dioxide can degrade, leading to issues such as increased leakage current and reduced gate control. Materials with superior electrical properties, such as higher dielectric constant, lower leakage current, and better thermal stability allowing for the development of faster, more efficient, and more reliable devices are in higher demand than ever. Two-dimensional layered semiconductor nanomaterials represented by compounds such …


Evaluating Neuroimaging Modalities In The A/T/N Framework: Single And Combined Fdg-Pet And T1-Weighted Mri For Alzheimer’S Diagnosis, Peiwang Liu May 2024

Evaluating Neuroimaging Modalities In The A/T/N Framework: Single And Combined Fdg-Pet And T1-Weighted Mri For Alzheimer’S Diagnosis, Peiwang Liu

McKelvey School of Engineering Theses & Dissertations

With the escalating prevalence of dementia, particularly Alzheimer's Disease (AD), the need for early and precise diagnostic techniques is rising. This study delves into the comparative efficacy of Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and T1-weighted Magnetic Resonance Imaging (MRI) in diagnosing AD, where the integration of multimodal models is becoming a trend. Leveraging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we employed linear Support Vector Machines (SVM) to assess the diagnostic potential of these modalities, both individually and in combination, within the AD continuum. Our analysis, under the A/T/N framework's 'N' category, reveals that FDG-PET consistently outperforms T1w-MRI across …


Integrating Implantable Bci Devices Within Bci2000 Using A Unified Framework And Toolchain For In-Vivo Research, Dhruva Mehta May 2024

Integrating Implantable Bci Devices Within Bci2000 Using A Unified Framework And Toolchain For In-Vivo Research, Dhruva Mehta

McKelvey School of Engineering Theses & Dissertations

The field of neurotechnology research has a bright and promising future as more devices are created. However, there are still many gaps in the field as the potential for neuromodulation grows. Devices such as the Micro-Leads StimZ system and the Ripple Grapevine/Summit system help bridge that gap by allowing for a broader variety of closed-loop neuromodulation experiments to be implemented thanks to their portability and versatility. Despite these devices being on the market, however, there needs to be a method to collaborate and interact with them across multiple research institutions. BCI2000 helps to address that by creating a standardized working …


Investigating Murine Uterine Tissue Dynamics: Biomechanical And Histological Perspectives On Postpartum Involution And Scar-Induced Remodeling, Savannah Elizabeth Chatman May 2024

Investigating Murine Uterine Tissue Dynamics: Biomechanical And Histological Perspectives On Postpartum Involution And Scar-Induced Remodeling, Savannah Elizabeth Chatman

McKelvey School of Engineering Theses & Dissertations

During pregnancy, the uterus undergoes structural and mechanical transformations to withstand the demands of a successful delivery. In cases where vaginal birth is not feasible, a Cesarean section (c-section), which involves a transverse abdominal incision, is used to facilitate delivery of the fetus and placenta1. Following the procedure, the uterus and abdominal tissue are carefully sutured to support postpartum recovery, leading to uterine scarring at the incision site1,2. Understanding the relationship between uterine scar integrity, postpartum involution, and the biomechanics of uterine tissue is a crucial step toward predicting the risk of uterine rupture during future …


Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood May 2024

Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood

McKelvey School of Engineering Theses & Dissertations

This thesis explores the micromechanical environment induced when cyclically compressing hydrogels via finite element modeling and experimentally on the impact of loading on mesenchymal stem cells (MSCs) when encapsulated withing 3D hydrogel matrices. Degenerative joint diseases, characterized by cartilage degradation, present significant challenges due to cartilage's limited self-repair capacity. Innovative approaches, including stem cell-based therapies and engineered biomaterials, have emerged as promising strategies for cartilage repair and regeneration. This work specifically investigates the calibration of a bioreactor, the uniformity of load response across the hydrogel constructs via finite element modeling (FEM), and the stress response of MSCs subjected to various …


Development Of A Wearable Short-Wave Infrared Photoplethysmography Device For Detection And Monitoring Of Hemodilution During Postpartum Hemorrhage, Hannah Gruensfelder May 2024

Development Of A Wearable Short-Wave Infrared Photoplethysmography Device For Detection And Monitoring Of Hemodilution During Postpartum Hemorrhage, Hannah Gruensfelder

McKelvey School of Engineering Theses & Dissertations

ABSTRACT OF THE THESIS

A Thesis on the Development of a Wearable Short-Wave Infrared Photoplethysmography Device for Detection and Monitoring of Hemodilution During Postpartum Hemorrhage

by

Hannah Gruensfelder

Master of Science in Biomedical Engineering

Washington University in St. Louis, 2024

Professor Christine O’Brien, Chair

Postpartum hemorrhage (PPH), the leading cause of maternal death and morbidity, affects nearly 14 million people worldwide each year, disproportionally impacting racial minorities and people in low resource settings. A timely diagnosis of PPH is key in providing optimal patient care, as an estimated 90% of deaths due to PPH are preventable with early diagnosis and …


The Role Of Voluntary Descending Control In Enhancing Motor Function Via Transcutaneous Spinal Cord Stimulation, Yoon Kim May 2024

The Role Of Voluntary Descending Control In Enhancing Motor Function Via Transcutaneous Spinal Cord Stimulation, Yoon Kim

McKelvey School of Engineering Theses & Dissertations

Spinal cord injury (SCI) is a life-changing event that causes lasting motor impairments. Transcutaneous spinal cord stimulation (tSCS), a non-invasive form of neuromodulation in which electrodes are placed on the skin and used to stimulate the spinal circuits via an electrical current, has demonstrated positive effects on motor function recovery in individuals who have had SCIs. However, the precise mechanism of how tSCS interacts with voluntary descending drive remains poorly understood. This study aims to investigate the role of voluntary descending control in influencing reflex responses triggered by tSCS.

Electromyography (EMG) recordings were performed in ten unimpaired individuals while they …


Modeling Of Nk Cells In Pediatric Patients With Unusually Severe Or Recurrent Hsv Using High-Dimensional Flow Cytometry, Yunran Feng May 2024

Modeling Of Nk Cells In Pediatric Patients With Unusually Severe Or Recurrent Hsv Using High-Dimensional Flow Cytometry, Yunran Feng

McKelvey School of Engineering Theses & Dissertations

HSV infection is broadly spread all over the world with some patients having severe and/or recurrent HSV infections. Our lab studies human Natural Killer (NK) cells, which are important in innate immune responses to viral infections and tumors. A publication in 2013 by Ornstein et al from our lab studied HSV+ pediatric patients and found some associations between severe infection and defects in NK cytolytic function. PLCG2 haploinsufficient variants found in 2 HSV patients causing PLCγ2 hypophosphorylation, and loss of cytolytic function in NK cells is a novel finding recently published by Alinger et al from our lab in 2023. …


Numerical Simulations Of Supersonic/ Hypersonic Flows In Compression Corners And A Hypersonic Flow Study Of Atmospheric Entry Of Mars Science Laboratory Capsule, Dexter Allen May 2024

Numerical Simulations Of Supersonic/ Hypersonic Flows In Compression Corners And A Hypersonic Flow Study Of Atmospheric Entry Of Mars Science Laboratory Capsule, Dexter Allen

McKelvey School of Engineering Theses & Dissertations

This thesis consists of two related parts. The first part is the study of supersonic/hypersonic flow in compression corners. The compression corners are simple geometries but rich in flow-features that can be challenging for accurate prediction of their flow fields in high-speed compressible flow using the Reynold-Averaged Navier-Stokes (RANS) equations in conjunction with a turbulence model. At higher degrees of corner angles, there exists a shock-boundary layer interaction region which includes a significant recirculation zone in the corner. In this thesis, experimentally available test cases for compression corner at Mach 3, 8, and 11 at various corner angles are modeled …


Low Impedance, Durable, Self-Adhesive Hydrogel Epidermal Electrodes For Electrophysiology Recording, Naiyan Wu Apr 2024

Low Impedance, Durable, Self-Adhesive Hydrogel Epidermal Electrodes For Electrophysiology Recording, Naiyan Wu

McKelvey School of Engineering Theses & Dissertations

Traditional electrodes used for electrophysiology recording, characterized by their hard, dry, and inanimate nature, are fundamentally mismatched with the soft, moist, and bioactive characteristics of biological tissues, leading to suboptimal skin-electrode interfaces. Hydrogel materials, mirroring the high water content and biocompatibility of biological tissues, emerge as promising candidates for epidermal electronic materials due to their adjustable physicochemical properties. However, challenges such as inadequate electrical conductivity, elevated skin impedance, unreliable adhesion in moist conditions, and performance decline from dehydration have significantly restricted the efficacy and applicability of hydrogel-based electrodes. In this thesis, we report a high-performance hydrogel epidermal electrode patch for …


Estimating And Detecting Slow-Wave Events In Eeg Signals, Zhenghao Xiong Dec 2023

Estimating And Detecting Slow-Wave Events In Eeg Signals, Zhenghao Xiong

McKelvey School of Engineering Theses & Dissertations

Slow wave activity (SWA) is an electroencephalogram (EEG) pattern commonly occurring during anesthesia and deep sleep, and is hence a candidate biomarker to quantify such states and understand their connection to various phenotypes. SWA consists of individual slow waves (ISW), high-amplitude deflections lasting for approximately 0.5 to 1 second, and occurring quasi-periodically. This latter fact poses a challenge for conventional power spectral density EEG analysis methods that perform best when there is persistency of oscillatory activity. In this work, we pursue a time-domain detection framework for identifying and quantifying ISWs as a metric for SWA. Our method works, in essence, …


Commercial Adsorbents For Co2 Removal For Biogas Upgradation: An Experimental Study, Aakriti Bagla Dec 2023

Commercial Adsorbents For Co2 Removal For Biogas Upgradation: An Experimental Study, Aakriti Bagla

McKelvey School of Engineering Theses & Dissertations

No abstract provided.


Enhanced Fabrication Of Microdroplet Generator Nozzle Arrays: Optimizing Koh Etching For Microfluidic Applications, Hongyu Bai Dec 2023

Enhanced Fabrication Of Microdroplet Generator Nozzle Arrays: Optimizing Koh Etching For Microfluidic Applications, Hongyu Bai

McKelvey School of Engineering Theses & Dissertations

Ultrasonic microdroplet generators are useful devices with broad applications ranging from aerosolized drug delivery to three-dimensional (3D) printing-based additive manufacturing. One such technology comprises a microfabricated array of nozzles with droplet production driven by a piezoelectric transducer. The present study focuses on refining a critical fabrication step, anisotropic wet etching of pyramidal nozzles using a basic potassium hydroxide (KOH) solution. Given the integral role of nozzle geometry in device operation, high-precision techniques including Reactive Ion Etching (RIE), Deep Reactive Ion Etching (DRIE), and KOH wet etching were employed. A tapering geometry is preferred for acoustic wave focusing and efficient droplet …


An Apparatus To Quantify Lengthwise Flexural Rigidity Profiles Of Endovascular Devices, Charles B. Suskin Dec 2023

An Apparatus To Quantify Lengthwise Flexural Rigidity Profiles Of Endovascular Devices, Charles B. Suskin

McKelvey School of Engineering Theses & Dissertations

Endovascular procedures require access to distal anatomical sites through the vasculature using catheters and guidewires. Quantitative frameworks for device behavior during procedures hold the potential to drive device design through greater understanding of the mechanical behavior of endovascular devices, and offer the potential to personalize care based on a patient's particular vascular anatomy. However, data that would facilitate this technology are lacking, partly due to undisclosed material properties from manufacturers and partly due to the intricate variations along the length of each device due to material changes and the intersections between them. We developed a three-point bend test methodology on …


Design Of Human Serum Albumin And Adenovirus Conjugation Via Catcher/Tag Molecular Glue, Peijie Zhao Dec 2023

Design Of Human Serum Albumin And Adenovirus Conjugation Via Catcher/Tag Molecular Glue, Peijie Zhao

McKelvey School of Engineering Theses & Dissertations

Adenovirus (Ad) has been the ideal cargo delivery mechanism, and its moderate immunological response makes it ideal for in vivo gene therapies since its discovery in 1953. However, the robust immunogenicity of the Ad capsid and low vaccine absorption via mucous membranes and epithelium put a limit on the process of developing intranasal vaccines. Efforts are being made to enhance the effectiveness of Ad vectors and numerous studies have demonstrated the remarkable capacity of human serum albumin (HSA) to extend plasma half-life and facilitate targeted intranasal delivery. In this study, we devised an innovative method for employing the Catcher/Tag molecular …


Improving And Integrating Quantitative Single Cell Spatial Biology For Theranostic Medicine, Peng Lu Dec 2023

Improving And Integrating Quantitative Single Cell Spatial Biology For Theranostic Medicine, Peng Lu

McKelvey School of Engineering Theses & Dissertations

Disease states are the result of a complex interplay of many different cell types interacting in close proximity in the context of often heterogeneous tissues. Alpha particles are drawing intense research and clinical interest because of their potent cytotoxic effects and their short path lengths. Analyzing the dose distribution and tissue micro-environment for alpha therapy plays a key role in predicting the efficacy of this targeted radiotherapy. However, to date there have been no direct on-tissue analytical methods for alpha dose distributions and the corresponding tissue microenvironments.

Therefore, we have developed a pipeline to overcome this limitation by utilizing quantitative …


Real-Time Analysis Of Aerosol Size Distributions With The Fast Integrated Mobility Spectrometer (Fims), Daisy Wang Dec 2023

Real-Time Analysis Of Aerosol Size Distributions With The Fast Integrated Mobility Spectrometer (Fims), Daisy Wang

McKelvey School of Engineering Theses & Dissertations

The Fast Integrated Mobility Spectrometer (FIMS) has emerged as an innovative instrument in the aerosol science domain. It employs a spatially varying electric field to separate charged aerosol particles by their electrical mobilities. These separated particles are then enlarged through vapor condensation and imaged in real time by a high-speed CCD camera. FIMS achieves near 100% detection efficiency for particles ranging from 10 nm to 600 nm with a temporal resolution of one second. However, FIMS’ real-time capabilities are limited by an offline data analysis process. Deferring analysis until hours or days after measurement makes FIMS' capabilities less valuable for …


Automatic Cardiac Mri Image Segmentation And Mesh Generation, Ziyuan Li Sep 2023

Automatic Cardiac Mri Image Segmentation And Mesh Generation, Ziyuan Li

McKelvey School of Engineering Theses & Dissertations

Segmenting and reconstructing cardiac anatomical structures from magnetic resonance (MR) images is essential for the quantitative measurement and automatic diagnosis of cardiovascular diseases [1]. However, manual evaluation of the time-series cardiac MRI (CMRI) obtained during routine clinical care are laborious, inefficient, and tends to produce biased and non-reproducible results [2]. This thesis proposes an end-to-end pipeline for automatically segmenting short-axis (SAX) CMRI images and generating high-quality 2D and 3D meshes suitable for finite element analysis. The main advantage of our approach is that it can not only work as a stand-alone pipeline for the automatic CMR image segmentation and mesh …


Calculating The Difference In Stiffness Of Living T Cells Through Micropipette Aspiration, Minju Lee Aug 2023

Calculating The Difference In Stiffness Of Living T Cells Through Micropipette Aspiration, Minju Lee

McKelvey School of Engineering Theses & Dissertations

Cardiovascular disease (CVD) accounted for 17.9 million deaths in 2019, with fibrosis contributing to nearly a quarter of these fatalities [1,2]. Fibrosis, characterized by excessive connective tissue formation, has been strongly linked to T cells, essential components of the immune system. This study explores the mechanisms of T cell activation and the subsequent changes in biophysical properties like diameter, stiffness, and elasticity, aiming to develop therapeutic strategies for fibrosis-related diseases, including CVD. Utilizing the micropipette aspiration technique, we accurately assessed T cell stiffness and observed a change in bulk cell stiffness upon activation. The results demonstrated increased fluid-like behavior in …


Watch: A Distributed Clock Time Offset Estimation Tool On The Platform For Open Wireless Data-Driven Experimental Research, Cassie Jeng Aug 2023

Watch: A Distributed Clock Time Offset Estimation Tool On The Platform For Open Wireless Data-Driven Experimental Research, Cassie Jeng

McKelvey School of Engineering Theses & Dissertations

The synchronization of the clocks used at different devices across space is of critical importance in wireless communications networks. Each device’s local clock differs slightly, affecting the times at which packets are transmitted from different nodes in the network. This thesis provides experimentation and software development on POWDER, the Platform for Open, Wireless Data-driven Experimental Research, an open wireless testbed across the University of Utah campus. We build upon Shout, a suite of Python scripts that allow devices to iteratively transmit and receive with each other and save the collected data. We introduce WATCH, an experimental method to estimate clock …


Performance And Emissions Study Of N+3 And N+4 Engine Models With Several Fuel Types Using Npss, Abel Solomon Aug 2023

Performance And Emissions Study Of N+3 And N+4 Engine Models With Several Fuel Types Using Npss, Abel Solomon

McKelvey School of Engineering Theses & Dissertations

The aviation industry is known to be one of the major contributors to greenhouse gases accounting for 4.9% of the global greenhouse emissions. With the ever-increasing threat of climate change to the overall survival of the planet, the exploration of new technologies and alternative energy sources that minimize greenhouse gas emissions are of paramount importance. In this regard, the development of propulsion systems well suited for the performance and emissions requirements of future commercial aircraft plays a crucial role. This thesis investigates N+3 and N+4 technology-level propulsion systems that are proposed by NASA as possible propulsion systems for advanced single-aisle …


Design Of Microwave Superconducting Resonators For Materials Characterization, Xinyi Zhao Aug 2023

Design Of Microwave Superconducting Resonators For Materials Characterization, Xinyi Zhao

McKelvey School of Engineering Theses & Dissertations

A resonator is a specialized device capable of storing and transferring energy at precise frequencies. Resonators find widespread use in various fields, such as electrical engineering, physics, and material science, owing to their exceptional ability to accurately measure, filter, and amplify signals. Different types of resonators exist, but coplanar waveguide (CPW) and coupled coplanar waveguide (CCPW) resonators are popular due to their high-frequency operation and easy integration into microfabrication processes.


Mirror Position Detection In A Catoptric Surface, Run Zhang Aug 2023

Mirror Position Detection In A Catoptric Surface, Run Zhang

McKelvey School of Engineering Theses & Dissertations

The Catoptric Surface research project is a pioneering exploration of controlling daylight effects within built environments. In this thesis, we focus on the mirror position detection problem, which plays a vital role in achieving dynamic control over the direction of reflected light within a space. To address the challenge of mirror position detection, we employ computer vision techniques, specifically edge detection and the RANdom SAmple Consensus (RANSAC) algorithm. Edge detection is utilized to identify significant changes in intensity or color, corresponding to object boundaries, while RANSAC is applied for ellipse fitting. By iteratively selecting minimal subsets of points and fitting …


The Effect Of Spinal Cord Stimulation And Video Games Training On Body-Machine Interface Control, Jie Fei May 2023

The Effect Of Spinal Cord Stimulation And Video Games Training On Body-Machine Interface Control, Jie Fei

McKelvey School of Engineering Theses & Dissertations

Damage to the spinal cord causes long-lasting loss of motor and sensory function, and currently, there is no ‘cure’ for paralysis. However, even people with severe spinal cord injuries (SCI) have some residual mobility. Studies have shown that transcutaneous electrical spinal cord stimulation (tSCS) combined with functional training targeting residual mobility can further improve the motor function of individuals with SCI. In this study, we present a technical framework that aims to enhance rehabilitation outcomes by targeting residual mobility through a motor training-based approach. Our technical framework centers around a non-invasive body-machine interface (BoMI) that relies on the use of …


Novel Microfluidic Devices To Model The Interactions Between Lymphatics And Breast Cancer, Jade Weber May 2023

Novel Microfluidic Devices To Model The Interactions Between Lymphatics And Breast Cancer, Jade Weber

McKelvey School of Engineering Theses & Dissertations

The lymphatic system is responsible for immune circulation and fluid balance in the body. It accomplishes this by draining interstitial fluid from local tissue and transferring it to lymph nodes and back into blood circulation. However, this process is implicated in many pathologies, one of the most dangerous being breast cancer metastasis to the lymph nodes. The largest factor in breast cancer patient mortality is metastasis. Lymphangiogenesis, the growth of new lymphatic vessels, has been thought to play a dynamic role in aiding breast cancer metastasis. Breast cancer tumor cells have been shown to remodel the functionality of local lymph …


Targeted Adversarial Attacks Against Neural Network Trajectory Predictors, Kaiyuan Tan May 2023

Targeted Adversarial Attacks Against Neural Network Trajectory Predictors, Kaiyuan Tan

McKelvey School of Engineering Theses & Dissertations

Trajectory prediction is an integral component of modern autonomous systems as it allows for envisioning future intentions of nearby moving agents. Due to the lack of other agents' dynamics and control policies, deep neural network (DNN) models are often employed for trajectory forecasting tasks. Although there exists an extensive literature on improving the accuracy of these models, there is a very limited number of works studying their robustness against adversarially crafted input trajectories. To bridge this gap, in this paper, we propose a targeted adversarial attack against DNN models for trajectory forecasting tasks. We call the proposed attack TA4TP for …


Optical Perturbation Of Protein Kinase A Activity Via Photoactivatable Inhibitor Peptides, Peter Chen May 2023

Optical Perturbation Of Protein Kinase A Activity Via Photoactivatable Inhibitor Peptides, Peter Chen

McKelvey School of Engineering Theses & Dissertations

Protein Kinase A (PKA) plays important roles in diverse biological processes such as sleep, long term memory, and synaptic plasticity. In addition, PKA also acts as an integrator of neuromodulator signaling though G protein-coupled receptor activation. However, despite genetic knockout and pharmacological inhibition experiments that demonstrate the importance of PKA, it is unclear where, when, or how PKA plays these roles in cellular physiology and behavior. In order to better understand the function of PKA in these processes, and how neuromodulator signaling drives complex behavioral changes, there exists a need for a method to selectively activate/inactivate PKA with high spatial …


Optimization And Information Problems In Operations, Puping Jiang May 2023

Optimization And Information Problems In Operations, Puping Jiang

Olin Business School Electronic Theses and Dissertations

The main purpose of this dissertation is to study the optimization problems and the value of information in various commercial settings, especially in the emerging platform economy.

Chapter 1, “Data-Driven Asset Selling”. Motivated by online asset selling marketplace business (e.g., used cars and real estate), we formulate a data-driven asset selling dynamic pricing framework which utilizes platforms’ access to customers’ online behavioral data. With mild assumptions on the demand model, careful characterization of the problem structure shows that the model admits some ideal properties that facilitate our regret analysis under our dynamic programming setting. Instead of studying the policy performance …


Data-Driven Platform And Digital Operations, Bing Bai May 2023

Data-Driven Platform And Digital Operations, Bing Bai

Olin Business School Electronic Theses and Dissertations

The objective of this dissertation is to study the emerging operations issues on data-driven platforms and digital operations. With the increasing availability of data and the development of information technologies, platforms process a large amount of data in order to efficiently make daily operational decisions. Understanding human behaviors and the human-algorithm connection is instrumental to the success of this process. In my research, I implement field experiments and use structural models to study in-warehouse worker behavior and out-of-warehouse customer behavior in the last mile of logistics.

In Chapter 1, “The Impacts of Algorithmic Work Assignment on Fairness Perceptions and Productivity: …


Confined Growth Of Perovskite Stabilized By Strain Engineering, Xucheng Tao May 2023

Confined Growth Of Perovskite Stabilized By Strain Engineering, Xucheng Tao

McKelvey School of Engineering Theses & Dissertations

Halide perovskite has been extensively studied for its excellent optoelectronic properties. In this project, we want to explore some range of band gap that conventional 2D materials could not have. To overcome this challenge, we aimed to produce two-dimensional (2D) perovskites with large scale which is suitable for device fabrication and improve its stability using strain engineering. To prepare such 2D perovskite, we tried 2D transformation first and then decided to use confined growth to optimize result. For strain engineering, we employed sputtered nickel as an external stressor.

So far, we have produced multilayer polycrystalline perovskites material close to atomic …