Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

University of Central Florida

Physical Sciences and Mathematics

Nonlinear optics

Articles 1 - 17 of 17

Full-Text Articles in Entire DC Network

Two-Photon Absorption In Bulk Semiconductors And Quantum Well Structures And Its Applications, Himansu Pattanaik Jan 2015

Two-Photon Absorption In Bulk Semiconductors And Quantum Well Structures And Its Applications, Himansu Pattanaik

Electronic Theses and Dissertations

The purpose of this dissertation is to provide a study and possible applications of two-photon absorption (2PA), in direct-gap semiconductors and quantum-well (QW) semiconductor structures. One application uses extremely nondegenerate (END) 2PA, for mid-infrared (mid-IR) detection in uncooled semiconductors. The use of END, where the two photons have very different energies gives strong enhancement comapared to degenerate 2PA. This END-2PA enhanced detection is also applied to mid-IR imaging and light detection and ranging (LIDAR) in uncooled direct-gap photodiodes. A theoretical study of degenerate 2PA (D-2PA) in quantum wells, QWs, is presented, along with a new theory of ND 2PA in …


White Light Continuum For Broadband Nonlinear Spectroscopy, Trenton Ensley Jan 2015

White Light Continuum For Broadband Nonlinear Spectroscopy, Trenton Ensley

Electronic Theses and Dissertations

Supercontinuum (SC) generation, oftentimes referred to as white-light continuum (WLC), has been a subject of interest for more than 40 years. From the first observation of WLC in condensed media in the early 1970s to the first observation of WLC in gases in the mid-1980s, much work has been devoted to developing a framework for understanding the complex nature of this phenomenon as well as discovering its utility in various applications. The main effort of this dissertation is to develop a WLC for the purpose of broadband nonlinear spectroscopy and use it in spectroscopic measurements. The ability to generate a …


Nonlinear Integrated Photonics On Silicon And Gallium Arsenide Substrates, Jichi Ma Jan 2014

Nonlinear Integrated Photonics On Silicon And Gallium Arsenide Substrates, Jichi Ma

Electronic Theses and Dissertations

Silicon photonics is nowadays a mature technology and is on the verge of becoming a blossoming industry. Silicon photonics has also been pursued as a platform for integrated nonlinear optics based on Raman and Kerr effects. In recent years, more futuristic directions have been pursued by various groups. For instance, the realm of silicon photonics has been expanded beyond the well-established near-infrared wavelengths and into the mid-infrared (3 - 5 µm). In this wavelength range, the omnipresent hurdle of nonlinear silicon photonics in the telecommunication band, i.e., nonlinear losses due to two-photon absorption, is inherently nonexistent. With the lack of …


Laser Filamentation - Beyond Self-Focusing And Plasma Defocusing, Khan Lim Jan 2014

Laser Filamentation - Beyond Self-Focusing And Plasma Defocusing, Khan Lim

Electronic Theses and Dissertations

Laser filamentation is a highly complex and dynamic nonlinear process that is sensitive to many physical parameters. The basic properties that define a filament consist of (i) a narrow, high intensity core that persists for distances much greater than the Rayleigh distance, (ii) a low density plasma channel existing within the filament core, and (iii) a supercontinuum generated over the course of filamentation. However, there remain many questions pertaining to how these basic properties are affected by changes in the conditions in which the filaments are formed; that is the premise of the work presented in this dissertation. To examine …


Techniques For Characterization Of Third Order Optical Nonlinearities, Manuel Ferdinandus Jan 2014

Techniques For Characterization Of Third Order Optical Nonlinearities, Manuel Ferdinandus

Electronic Theses and Dissertations

This dissertation describes the development of novel techniques for characterization of nonlinear properties of materials. The dissertation is divided into two parts, a background and theory section and a technique development section. In the background and theory section we explain the origins of the nonlinear optical response of materials across many different spatial and temporal scales. The mechanisms that we are most interested in are the electronic nuclear and reorientational responses, which occur on the range of sub-femtosecond to several picoseconds. The electronic mechanism is due to the electrons of a material experiencing a non-parabolic potential well due a strong …


Cascaded Plasmon Resonances For Enhanced Nonlinear Optical Response, Seyfollah Toroghi Jan 2014

Cascaded Plasmon Resonances For Enhanced Nonlinear Optical Response, Seyfollah Toroghi

Electronic Theses and Dissertations

The continued development of integrated photonic devices requires low-power, small volume all-optical modulators. The weak nonlinear optical response of conventional optical materials requires the use of high intensities and large interaction volumes in order to achieve significant light modulation, hindering the miniaturization of all-optical switches and the development of lightweight transmission optics with nonlinear optical response. These challenges may be addressed using plasmonic nanostructures due to their unique ability to confine and enhance electric fields in sub-wavelength volumes. The ultrafast nonlinear response of free electrons in such plasmonic structures and the fast thermal nonlinear optical response of metal nanoparticles, as …


Engineering And Application Of Ultrafast Laser Pulses And Filamentation In Air, Nicholas Barbieri Jan 2013

Engineering And Application Of Ultrafast Laser Pulses And Filamentation In Air, Nicholas Barbieri

Electronic Theses and Dissertations

Continuing advances in laser and photonic technology has seen the development of lasers with increasing power and increasingly short pulsewidths, which have become available over an increasing range of wavelengths. As the availability of laser sources grow, so do their applications. To make better use of this improving technology, understanding and controlling laser propagation in free space is critical, as is understanding the interaction between laser light and matter. The need to better control the light obtained from increasingly advanced laser sources leads to the emergence of beam engineering, the systematic understanding and control of light through refractive media and …


Third Order Nonlinearity Of Organic Molecules, Honghua Hu Jan 2012

Third Order Nonlinearity Of Organic Molecules, Honghua Hu

Electronic Theses and Dissertations

The main goal of this dissertation is to investigate the third-order nonlinearity of organic molecules. This topic contains two aspects: two-photon absorption (2PA) and nonlinear refraction (NLR), which are associated with the imaginary and real part of the third-order nonlinearity (χ (3)) of the material, respectively. With the optical properties tailored through meticulous molecular structure engineering, organic molecules are promising candidates to exhibit large third-order nonlinearities. Both linear (absorption, fluorescence, fluorescence excitation anisotropy) and nonlinear (Z-scan, two-photon fluorescence, pump-probe) techniques are described and utilized to fully characterize the spectroscopic properties of organic molecules in solution or solid-state form. These properties …


Experimental And Theoretical Approaches To Characterization Of Electronic Nonlinearities In Direct-Gap Semiconductors, Claudiu Cirloganu Jan 2010

Experimental And Theoretical Approaches To Characterization Of Electronic Nonlinearities In Direct-Gap Semiconductors, Claudiu Cirloganu

Electronic Theses and Dissertations

The general goal of this dissertation is to provide a comprehensive description of the limitations of established theories on bound electronic nonlinearities in direct-gap semiconductors by performing various experiments on wide and narrow bandgap semiconductors along with developing theoretical models. Nondegenerate two-photon absorption (2PA) is studied in several semiconductors showing orders of magnitude enhancement over the degenerate counterpart. In addition, three-photon absorption (3PA) is studied in ZnSe and other semiconductors and a new theory using a Kane 4-band model is developed which fits new data well. Finally, the narrow gap semiconductor InSb is studied with regard to multiphoton absorption, free-carrier …


Nonlinear Absorption And Free Carrier Recombination In Direct Gap Semiconductors, Peter D. Olszak Jan 2010

Nonlinear Absorption And Free Carrier Recombination In Direct Gap Semiconductors, Peter D. Olszak

Electronic Theses and Dissertations

Nonlinear absorption of Indium Antimonide (InSb) has been studied for many years, yet due to the complexity of absorption mechanisms and experimental difficulties in the infrared, this is still a subject of research. Although measurements have been made in the past, a consistent model that worked for both picosecond and nanosecond pulse widths had not been demonstrated. In this project, temperature dependent two-photon (2PA) and free carrier absorption (FCA) spectra of InSb are measured using femtosecond, picosecond, and nanosecond IR sources. The 2PA spectrum is measured at room temperature with femtosecond pulses, and the temperature dependence of 2PA and FCA …


Femtosecond Laser Written Volumetric Diffractive Optical Elements And Their Applications, Jiyeon Choi Jan 2009

Femtosecond Laser Written Volumetric Diffractive Optical Elements And Their Applications, Jiyeon Choi

Electronic Theses and Dissertations

Since the first demonstration of femtosecond laser written waveguides in 1996, femtosecond laser direct writing (FLDW) has been providing a versatile means to fabricate embedded 3-D microstructures in transparent materials. The key mechanisms are nonlinear absorption processes that occur when a laser beam is tightly focused into a material and the intensity of the focused beam reaches the range creating enough free electrons to induce structural modification. One of the most useful features that can be exploited in fabricating photonic structures is the refractive index change which results from the localized energy deposition. The laser processing system for FLDW can …


Optical Nonlinear Interactions In Dielectric Nano-Suspensions, Ramy El-Ganainy Jan 2009

Optical Nonlinear Interactions In Dielectric Nano-Suspensions, Ramy El-Ganainy

Electronic Theses and Dissertations

This work is divided into two main parts. In the first part (chapters 2-7) we consider the nonlinear response of nano-particle colloidal systems. Starting from the Nernst-Planck and Smoluchowski equations, we demonstrate that in these arrangements the underlying nonlinearities as well as the nonlinear Rayleigh losses depend exponentially on optical intensity. Two different nonlinear regimes are identified depending on the refractive index contrast of the nanoparticles involved and the interesting prospect of self-induced transparency is demonstrated. Soliton stability is systematically analyzed for both 1D and 2D configurations and their propagation dynamics in the presence of Rayleigh losses is examined. We …


Nonlinear Femtosecond Near Infrared Laser Structuring In Oxide Glasses, Arnaud Royon Jan 2009

Nonlinear Femtosecond Near Infrared Laser Structuring In Oxide Glasses, Arnaud Royon

Electronic Theses and Dissertations

Three-dimensional femtosecond laser structuring has a growing interest because of its ease of implementation and the numerous possible applications in the domain of photonic components. Structures such as waveguides, diffraction gratings, optical memories or photonic crystals can be fabricated thanks to this technique. Its use with oxide glasses is promising because of several advantages; they are resistant to flux and ageing, their chemical composition can easily be changed to fit the well-defined requirements of an application. They can already be found in Raman amplifiers, optical fibers, fiber lasers, and other devices. This thesis is based on two axes. The first …


Optical Solitons In Periodic Structures, Konstantinos Makris Jan 2008

Optical Solitons In Periodic Structures, Konstantinos Makris

Electronic Theses and Dissertations

By nature discrete solitons represent self-trapped wavepackets in nonlinear periodic structures and result from the interplay between lattice diffraction (or dispersion) and material nonlinearity. In optics, this class of self-localized states has been successfully observed in both one-and two-dimensional nonlinear waveguide arrays. In recent years such lattice structures have been implemented or induced in a variety of material systems including those with cubic (Kerr), quadratic, photorefractive, and liquid-crystal nonlinearities. In all cases the underlying periodicity or discreteness leads to new families of optical solitons that have no counterpart whatsoever in continuous systems. In the first part of this dissertation, a …


Optical Wave Propagation In Discrete Waveguide Arrays, Jared Hudock Jan 2005

Optical Wave Propagation In Discrete Waveguide Arrays, Jared Hudock

Electronic Theses and Dissertations

The propagation dynamics of light in optical waveguide arrays is characteristic of that encountered in discrete systems. As a result, it is possible to engineer the diffraction properties of such structures, which leads to the ability to control the flow of light in ways that are impossible in continuous media. In this work, a detailed theoretical investigation of both linear and nonlinear optical wave propagation in one- and two-dimensional waveguide lattices is presented. The ability to completely overcome the effects of discrete diffraction through the mutual trapping of two orthogonally polarized coherent beams interacting in Kerr nonlinear arrays of birefringent …


Quadratic Spatial Soliton Interactions, Ladislav Jankovic Jan 2004

Quadratic Spatial Soliton Interactions, Ladislav Jankovic

Electronic Theses and Dissertations

Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the …


Chemical Structure - Nonlinear Optical Property Relationships For A Series Of Two-Photon Absorbing Fluorene Molecules, Joel Mccajah Hales Jan 2004

Chemical Structure - Nonlinear Optical Property Relationships For A Series Of Two-Photon Absorbing Fluorene Molecules, Joel Mccajah Hales

Electronic Theses and Dissertations

This dissertation reports on the investigation of two-photon absorption (2PA) in a series of fluorenyl molecules. Several current and emerging technologies exploit this optical nonlinearity including two-photon fluorescence imaging, three-dimensional microfabrication, site-specific photodynamic cancer therapy and biological caging studies. The two key features of this nonlinearity which make it an ideal candidate for the above applications are its quadratic dependence on the incident irradiance and the improved penetration into absorbing media that it affords. As a consequence of the burgeoning field which exploits 2PA, it is a goal to find materials that exhibit strong two-photon absorbing capabilities. Organic materials are …