Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Entire DC Network

Measurements Of The 16c + 12c And 16c + 13c Fusion Cross Sections With Implications For Astrophysics, Ashley Ann Hood Nov 2019

Measurements Of The 16c + 12c And 16c + 13c Fusion Cross Sections With Implications For Astrophysics, Ashley Ann Hood

LSU Doctoral Dissertations

The fusion of neutron-rich nuclei is of interest to nuclear astrophysics and nuclear structure. X-ray superbursts are powered by runaway thermonuclear burning deep inside of a neutron star, where heating from the pycnonuclear fusion of neutron-rich isotopes is an important heat source. Experimental measurements of fusion cross sections of neutron-rich isotopes have provided insights regarding nucleon transfer and nuclear structure properties affecting fusion. Recently, the 15C + 12C total fusion cross section was measured using a 15C beam produced by the in-flight beam production facility, which is part of the Argonne Tandem LINAC Accelerator System (ATLAS) at …


High Power And Optomechanics In Advanced Ligo Detectors, Terra Christine Hardwick Nov 2019

High Power And Optomechanics In Advanced Ligo Detectors, Terra Christine Hardwick

LSU Doctoral Dissertations

In September 2015, a new era of astronomy began with the first direct detection of grav- itational waves from a binary black hole coalescence. The event was captured by the Laser Interferometer Gravitational-wave Observatory, comprised of two long-baseline interferometers, one in Livingston, LA and one in Hanford, WA. At the time of the first detection, the interferometers were part way through an upgrade to an advanced configuration and were operating with a strain sensitivity of just better than 10−23/Hz1/2 around 100Hz. The full Advanced LIGO design calls for sensitivity of a few parts in 10−24/Hz …


Alpha Capture Reaction Rates For Nucleosynthesis Within An Ab Initio Framework, Alison Constance Dreyfuss Nov 2019

Alpha Capture Reaction Rates For Nucleosynthesis Within An Ab Initio Framework, Alison Constance Dreyfuss

LSU Doctoral Dissertations

Clustering in nuclear systems has broad impacts on all phases of stellar burning, and plays a significant role in our understanding of nucleosynthesis, or how and where nuclei are produced in the universe. The role of alpha particles in particular is extremely important for nuclear astrophysics: 4He was one of the earliest elements produced in the Big Bang, it is one of the most abundant elements in the universe, and helium burning -- in particular, the triple-alpha process -- is one of the most important ``engines'' in stars. To better understand nucleosynthesis and stellar burning, then, it is important …


Visualization And Quantitation Of Radioiodine Distribution In Silver Zeolite Cartridges, Daniel Dimarco Oct 2019

Visualization And Quantitation Of Radioiodine Distribution In Silver Zeolite Cartridges, Daniel Dimarco

LSU Master's Theses

Iodine 131 is a major fission product released during a nuclear incident. This isotope provides a serious health hazard for humans and the environment, therefore nuclear power plants must monitor releases using air sampling. The air sampling is accomplished using air filter cartridges using silver zeolite as a filter media. During an emergency situation, silver zeolite is useful for its affinity to I-131 without adsorbing other radioactive gases. After leaving the plume, these cartridges are counted in a low background area. This measurement does not take into account the distribution of radioiodine in the cartridge. This study explores two methods …


Electromagnetic Sum Rules And Response Functions From The Symmetry-Adapted No-Core Shell Model, Robert Byron Baker Jul 2019

Electromagnetic Sum Rules And Response Functions From The Symmetry-Adapted No-Core Shell Model, Robert Byron Baker

LSU Doctoral Dissertations

Recent developments in ab initio nuclear structure have provided us with a variety of many-body methods capable of describing nuclei into the medium-mass region of the chart of nuclides. One of these, the symmetry-adapted no-core shell model (SA-NCSM), capitalizes on inherent symmetries of the nucleus and is uniquely suited to examine the underlying physics of dynamical quantities, such as the response function.

We examine the applicability of the SA-NCSM to calculations of these quantities and assess the quality of its inputs by calculating electromagnetic sum rules and response functions with the Lanczos sum rule method and Lanczos response function method, …


Assessment Of Excess Thyroid Cancer Risk Following A Hypothetical Radiological Incident In Louisiana And Best-Case Risk Reduction Achieved By Thyroid Blockade, Garrett A. Otis Jul 2019

Assessment Of Excess Thyroid Cancer Risk Following A Hypothetical Radiological Incident In Louisiana And Best-Case Risk Reduction Achieved By Thyroid Blockade, Garrett A. Otis

LSU Master's Theses

Radioactive isotopes of iodine are produced by nuclear power plants as a byproduct of nuclear fission reactions. If these isotopes are released into the environment, such as during a breach of containment, they constitute a health risk to exposed individuals. To mitigate the risk of thyroid cancer due to exposure to radioactive iodine, “iodide prophylaxis,” also known as “thyroid blockade,” can be used, usually by administration of potassium iodide (KI). In some areas of the world, KI has been provided to the general public by their governments as a precautionary measure against potential nuclear power plant incidents. However, in the …


Stray Radiation Dose From X-Ray And Proton Beam Radiation Therapies, Christopher William Schneider Jun 2019

Stray Radiation Dose From X-Ray And Proton Beam Radiation Therapies, Christopher William Schneider

LSU Doctoral Dissertations

The growing population of cancer survivors at risk of radiation induced side-effects is a public health concern. These side-effects include serious conditions such as second cancers, the majority of which occur outside of the primary treatment volume. Radiotherapy treatment planning systems systematically underestimate the dose to tissues out-of-field. Attempts to predict and reduce the risks of radiogenic side effects require accurate and personalized knowledge of the out-of-field radiation dose to patients. The long-term goal of this research is to provide clinical and research tools necessary to reduce the risk of radiotherapy side effects and improve the health outcomes of radiotherapy …


Determination Of Scatter Fractions, Albedos, And Tenth Value Layers For Shielding Of Synchrotron Beamline Hutches, Bethany Lynn Broekhoven May 2019

Determination Of Scatter Fractions, Albedos, And Tenth Value Layers For Shielding Of Synchrotron Beamline Hutches, Bethany Lynn Broekhoven

LSU Master's Theses

Synchrotron facilities require substantial amounts of shielding to protect facility staff and researchers. To meet mandatory exposure limits, the traditional combination of time, distance, and shielding of the radiation source are utilized. Because of continuous 24-7 operation of most synchrotrons, time is the least useful tool. The experimental stations for synchrotron x-ray beamlines, called hutches, enforce a minimum distance from the source, but shielding provided by hutch walls is still the principal tool for a synchrotron facility. Currently there is no single resource for synchrotron beamline hutch shielding design in the literature; most hutch shielding is designed through either over-simplified …


Nonlinear Optical Studies Of Bulk And Thin Film Complex Materials, Joel E. Taylor May 2019

Nonlinear Optical Studies Of Bulk And Thin Film Complex Materials, Joel E. Taylor

LSU Doctoral Dissertations

Nonlinear optical studies of bulk and thin film materials provide a vast playground for physical and dynamical characterization. In this thesis, we have implemented experimental methods to probe novel phase transitions in single crystals using rotational anisotropic second harmonic generation (RASHG) and carrier dynamics in thin films with time-resolved pump-probe reflectivity. Furthermore, a novel low temperature ultra-high vacuum system coupled to nonlinear optics has been developed to extend lab capabilities. Doping (Bi1-xSbx)2Se3 with antimony, the surface electronic reconstruction near x=80% was identified with RASHG by deviations in the six-fold and three-fold polarization anisotropic …


Application Of X-Ray Grating Interferometry To Polymer/Flame Retardant Blends In Additive Manufacturing, Omoefe Joy Kio May 2019

Application Of X-Ray Grating Interferometry To Polymer/Flame Retardant Blends In Additive Manufacturing, Omoefe Joy Kio

LSU Doctoral Dissertations

X-ray grating interferometry is a nondestructive tool for visualizing the internal structures of samples. Image contrast can be generated from the absorption of X-rays, the change in phase of the beam and small-angle X-ray scattering (dark-field). The attenuation and differential phase data obtained complement each other to give the internal composition of a material and large-scale structural information. The dark-field signal reveals sub-pixel structural detail usually invisible to the attenuation and phase probe, with the potential to highlight size distribution detail in a fashion faster than conventional small-angle scattering techniques. This work applies X-ray grating interferometry to the study of …


Framework For Algorithmically Optimizing Longitudinal Health Outcomes: Examples In Cancer Radiotherapy And Occupational Radiation Protection, Lydia Joyce Wilson May 2019

Framework For Algorithmically Optimizing Longitudinal Health Outcomes: Examples In Cancer Radiotherapy And Occupational Radiation Protection, Lydia Joyce Wilson

LSU Doctoral Dissertations

Background: Advancements in the treatment of non-infectious disease have enabled survival rates to steadily increase in recent decades (e.g., diabetes, heart disease, and cancer). Epidemiological studies have revealed that the treatments for these diseases can have life-threatening and/or life–altering effects. Thus, realizing the full beneficial potential of advanced treatments necessitates new tools to algorithmically consider all major components of the health outcome, including benefit and detriment. The goal of this dissertation was to develop a framework for improving projected health outcomes following planned radiation exposures in consideration of all beneficial and detrimental, early and late, and fatal and non-fatal …


Evaluation Of Ventilation Assistance For Improving Respiratory Reproducibility In Radiation Therapy, Cameron J. Sprowls Apr 2019

Evaluation Of Ventilation Assistance For Improving Respiratory Reproducibility In Radiation Therapy, Cameron J. Sprowls

LSU Master's Theses

Background: Respiratory motion affects all tumor sites in the thorax and abdomen. Variations of the respiratory pattern cause variations of the tumor motion which can result in differences between the planned and delivered dose distributions. Previous breathing guidance techniques have been investigated to improve respiratory reproducibility; however, ventilation assistance has not been investigated. We evaluated using bi-level positive airway pressure (BIPAP) ventilation assistance for improving respiratory reproducibility in patients with tumor sites impacted by respiratory motion.

Methods: Written informed consent was obtained for 10 patients currently undergoing radiation therapy treatment. Patients participated in sessions over their course of treatment, which …


Exploring New Fe-Substituted Rare-Earth-Based High Entropy Alloys, Glendon Rewerts Apr 2019

Exploring New Fe-Substituted Rare-Earth-Based High Entropy Alloys, Glendon Rewerts

Honors Theses

No abstract provided.


Optimization Of Quantum Optical Metrology Systems, Nicholas Michael Studer Mar 2019

Optimization Of Quantum Optical Metrology Systems, Nicholas Michael Studer

LSU Doctoral Dissertations

It can be said that all of humanity's efforts can be understood as a problem of optimization. We each have a natural sense of what is ``good'' or ``bad'' and thus our actions tend towards maximizing -- or optimizing -- some notion of good and minimizing those things we perceive as bad or undesirable.

Within the sciences, the greatest form of good is knowledge. It is this pursuit of knowledge that leads to not only life-saving innovations and technology, but also to furthering our understanding of our natural world and driving our philosophical pursuits.

The principle method of obtaining knowledge …


Precision Of Parameter Estimation In Quantum Metrology, Chenglong You Mar 2019

Precision Of Parameter Estimation In Quantum Metrology, Chenglong You

LSU Doctoral Dissertations

The fundamental precision limit of an interferometer is crucial since it bounds the best possible sensitivity one could achieve using such a device. This thesis will focus on several different interferometers and try to give the ultimate precision bounds by carefully counting all the resources used in the interferometers.

The thesis begins with the basics of the quantum state of light. The fundamentals of quantum metrology are also reviewed and discussed. More specifically, the terminology of classical and quantum Cram\'er-Rao bound and classical and quantum Fisher information are introduced.

Chapter 3 discusses the conclusive precision bounds in two-mode interferometer such …


Determination Of Conversion Factors For Various Calibration Geometries Using Barium-133 In A Silver Zeolite Cartridge, Amin Hamideh Mar 2019

Determination Of Conversion Factors For Various Calibration Geometries Using Barium-133 In A Silver Zeolite Cartridge, Amin Hamideh

LSU Master's Theses

Iodine-131 (I-131) is a major fission product among other radionuclides released during a nuclear incident. This radioiodine has a half-life of 8.02 days and the primary organ of uptake through ingestion or inhalation is the thyroid gland. For these reasons, nuclear power plants must routinely monitor I-131 through air sampling. Currently, there are two adsorbing media to collect I-131: activated charcoal and silver zeolite cartridges. Silver zeolite cartridges are generally used during a post nuclear incident due to its affinity for iodine while not adsorbing noble gases such as krypton-85 and xenon-135. After an air sample is taken from a …


Phase Estimation In Linear And Nonlinear Interferometers, Sushovit Adhikari Mar 2019

Phase Estimation In Linear And Nonlinear Interferometers, Sushovit Adhikari

LSU Doctoral Dissertations

Phase estimation has a wide range of applications. Over the years, several strategies have been studied to improve precision in phase estimation. These strategies include using exotic quantum states to quantum detection schemes. This dissertation summarizes my effort in improving the precision of phase estimation with a linear and nonlinear interferometer.

Chapter 1 introduces quantum optics and quantum metrology. I introduce all relevant quantum states of light used. We also look into tools and terminologies of quantum metrology such as Fisher information, shot-noise limit, Heisenberg limit, etc., along with examples of phase estimation with a Mach-Zehnder interferometer.

In Chapter 2, …