Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Entire DC Network

Distributed Load Testing By Modeling And Simulating User Behavior, Chester Ira Parrott Dec 2020

Distributed Load Testing By Modeling And Simulating User Behavior, Chester Ira Parrott

LSU Doctoral Dissertations

Modern human-machine systems such as microservices rely upon agile engineering practices which require changes to be tested and released more frequently than classically engineered systems. A critical step in the testing of such systems is the generation of realistic workloads or load testing. Generated workload emulates the expected behaviors of users and machines within a system under test in order to find potentially unknown failure states. Typical testing tools rely on static testing artifacts to generate realistic workload conditions. Such artifacts can be cumbersome and costly to maintain; however, even model-based alternatives can prevent adaptation to changes in a system …


Development Of Reduced Order Models Using Reservoir Simulation And Physics Informed Machine Learning Techniques, Mark V. Behl Jr Nov 2020

Development Of Reduced Order Models Using Reservoir Simulation And Physics Informed Machine Learning Techniques, Mark V. Behl Jr

LSU Master's Theses

Reservoir simulation is the industry standard for prediction and characterization of processes in the subsurface. However, simulation is computationally expensive and time consuming. This study explores reduced order models (ROMs) as an appropriate alternative. ROMs that use neural networks effectively capture nonlinear dependencies, and only require available operational data as inputs. Neural networks are a black box and difficult to interpret, however. Physics informed neural networks (PINNs) provide a potential solution to these shortcomings, but have not yet been applied extensively in petroleum engineering.

A mature black-oil simulation model from Volve public data release was used to generate training data …


Adaptive Data Migration In Load-Imbalanced Hpc Applications, Parsa Amini Oct 2020

Adaptive Data Migration In Load-Imbalanced Hpc Applications, Parsa Amini

LSU Doctoral Dissertations

Distributed parallel applications need to maximize and maintain computer resource utilization and be portable across different machines. Balanced execution of some applications requires more effort than others because their data distribution changes over time. Data re-distribution at runtime requires elaborate schemes that are expensive and may benefit particular applications.

This dissertation discusses a solution for HPX applications to monitor application execution with APEX and use AGAS migration to adaptively redistribute data and load balance applications at runtime to improve application performance and scaling behavior. This dissertation provides evidence for the practicality of using the Active Global Address Space as is …


Quantum Criticality In Strongly Correlated Electron Systems, Samuel Obadiah Kellar Jul 2020

Quantum Criticality In Strongly Correlated Electron Systems, Samuel Obadiah Kellar

LSU Doctoral Dissertations

The study of the Hubbard model in three dimensions contains a variety of phases dependent upon the chosen parameters. This thesis shows that there is the indication of a zero temperature phase transition at a finite doping. The Hubbard model has been used to identify a similar quantum critical point in two dimensions. The presented results continue these investigations. The system demonstrates a strange metal phase at finite temperature which cannot be described in term of the conventional Fermi liquid. While there have been extensive studies over the past three decades for such materials in two dimensions, there are few …


Evolution Of Computational Thinking Contextualized In A Teacher-Student Collaborative Learning Environment., John Arthur Underwood May 2020

Evolution Of Computational Thinking Contextualized In A Teacher-Student Collaborative Learning Environment., John Arthur Underwood

LSU Doctoral Dissertations

The discussion of Computational Thinking as a pedagogical concept is now essential as it has found itself integrated into the core science disciplines with its inclusion in all of the Next Generation Science Standards (NGSS, 2018). The need for a practical and functional definition for teacher practitioners is a driving point for many recent research endeavors. Across the United States school systems are currently seeking new methods for expanding their students’ ability to analytically think and to employee real-world problem-solving strategies (Hopson, Simms, and Knezek, 2001). The need for STEM trained individuals crosses both the vocational certified and college degreed …


Predictive Modeling Of Asynchronous Event Sequence Data, Jin Shang May 2020

Predictive Modeling Of Asynchronous Event Sequence Data, Jin Shang

LSU Doctoral Dissertations

Large volumes of temporal event data, such as online check-ins and electronic records of hospital admissions, are becoming increasingly available in a wide variety of applications including healthcare analytics, smart cities, and social network analysis. Those temporal events are often asynchronous, interdependent, and exhibiting self-exciting properties. For example, in the patient's diagnosis events, the elevated risk exists for a patient that has been recently at risk. Machine learning that leverages event sequence data can improve the prediction accuracy of future events and provide valuable services. For example, in e-commerce and network traffic diagnosis, the analysis of user activities can be …


Information Retrieval-Based Optimization Approaches For Requirement Traceability Recovery, Danissa Victoria Rodriguez Caraballo Apr 2020

Information Retrieval-Based Optimization Approaches For Requirement Traceability Recovery, Danissa Victoria Rodriguez Caraballo

LSU Doctoral Dissertations

Requirements traceability provides support for important software engineering activities. Requirements traceability recovery (RTR) is becoming increasingly important due to the numerous benefits to the overall quality of software. Improving the RTR problem has become an active topic of research for software engineers; researchers have proposed a number of approaches for improving and automating RTR across the requirements and the source code of the system. Textual analysis and Information Retrieval (IR) techniques have been applied to the RTR problem for many years; however, most of the existing IR-based methodologies applied to the RTR problem are semiautomatic or time-consuming, even though many …


Applications And Implementation Of A Satellite-Based Quantum Internet, Renèe Desporte Apr 2020

Applications And Implementation Of A Satellite-Based Quantum Internet, Renèe Desporte

Honors Theses

No abstract provided.


Automated Extraction Of Network Activity From Memory Resident Code, Austin Nicholas Sellers Mar 2020

Automated Extraction Of Network Activity From Memory Resident Code, Austin Nicholas Sellers

LSU Master's Theses

Advancements in malware development, including the use of file-less and memory-only payloads, have led to a significant interest in the use of volatile memory analysis by digital forensics practitioners. Memory analysis can uncover a wealth of information not available via traditional analysis, such as the discovery of injected code, hooked APIs, and more. Unfortunately, the process of analyzing such malicious code is largely left to analysts who must manually reverse engineer the code to discover its intent. This task is not only slow and error-prone, but is also generally left only to senior-level analysts to perform, given that significant reverse …


Finding Music In Chaos: Designing And Composing With Virtual Instruments Inspired By Chaotic Equations, Landon P. Viator Mar 2020

Finding Music In Chaos: Designing And Composing With Virtual Instruments Inspired By Chaotic Equations, Landon P. Viator

LSU Doctoral Dissertations

Using chaos theory to design novel audio synthesis engines has been explored little in computer music. This could be because of the difficulty of obtaining harmonic tones or the likelihood of chaos-based synthesis engines to explode, which then requires re-instantiating of the engine to proceed with sound production. This process is not desirable when composing because of the time wasted fixing the synthesis engine instead of the composer being able to focus completely on the creative aspects of composition. One way to remedy these issues is to connect chaotic equations to individual parts of the synthesis engine instead of relying …


Improving Ocr Accuracy Of Damaged Pictures With Generative Adversarial Networks, Pu Du Feb 2020

Improving Ocr Accuracy Of Damaged Pictures With Generative Adversarial Networks, Pu Du

LSU Master's Theses

In this thesis, we focus on resolving the inpainting problem and improving Optical Character Recognition (OCR) accuracy of damaged text images at character level. We present a Generative Adversarial Network (GAN)-based model conditioned on class labels for image inpainting. This model is a deep convolutional neural network with encoder-decoder style architecture which can process images with holes at random locations. Experiments on the character images dataset demonstrate that our proposed model generates promising inpainting results and significantly improve OCR accuracy by reconstructing missing parts of damaged character images.