Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Entire DC Network

Enablement By Single-Use Technology Of Production Of Two Billion Vaccine Doses Of Adenovirus-Vectored Vaccine In Under A Year, Carina Citra Dewi Joe, Jinlin A Jiang, Richard Turner, Thomas Linke, Alexander D. Douglas Mar 2022

Enablement By Single-Use Technology Of Production Of Two Billion Vaccine Doses Of Adenovirus-Vectored Vaccine In Under A Year, Carina Citra Dewi Joe, Jinlin A Jiang, Richard Turner, Thomas Linke, Alexander D. Douglas

Single-Use Technologies V: Building The Future

Manufacturing of the simian adenovirus-vectored vaccine ChAdOx1 nCoV-19 (AZD1222, Vaxzevria) has played an important role in control of the COVID-19 pandemic. More than two billion doses have been produced, with the majority both made and used in low and middle income countries. This has been enabled by a programme of early technology transfer to multiple drug substance production sites, occurring in parallel with process development. The University of Oxford was transferring technology to five sites by March 2020, and AstraZeneca subsequently extended the drug substance manufacturing network to 12 countries.

This innovative approach was possible only as a result of …


Open Source 3d-Printable Planetary Roller Screw For Food Processing Applications, Marcello C. Guadagno, Jacob M. Loss, Joshua M. Pearce Apr 2021

Open Source 3d-Printable Planetary Roller Screw For Food Processing Applications, Marcello C. Guadagno, Jacob M. Loss, Joshua M. Pearce

Michigan Tech Publications

Historically, open source agriculture (OSA) was based on grassroots technology generally manufactured by hand tools or with manual machining. The rise of distributed digital manufacturing provides an opportunity for much more rapid lateral scaling of open source appropriate technologies for agriculture. However, the most mature distributed manufacturing area is plastic, which has limited use for many OSA applications. To overcome this limitation with design, this study reports on of a completely 3D-printable planetary roller screw linear actuator. The device is designed as a parametric script-based computer aided design (CAD) package to allow for the easy adaption for a number of …


The Economics Of Classroom 3-D Printing Of Open-Source Digital Designs Of Learning Aids, Nicole Gallup, Joshua M. Pearce Nov 2020

The Economics Of Classroom 3-D Printing Of Open-Source Digital Designs Of Learning Aids, Nicole Gallup, Joshua M. Pearce

Michigan Tech Publications

While schools struggle financially, capital for purchasing physical learning aids is often cut. To determine if costs could be reduced for learning aids, this study analyzed classroom-based distributed digital manufacturing using 3-D printing of open-source learning aid designs. Learning aid designs are analyzed in detail for their economic viability considering printing and assembly costs with purchased components and compared to equivalent or inferior commercial products available on Amazon. The results show current open-source 3-D printers are capable of manufacturing useful learning aids and that doing so provides high economic savings in the classroom. Overall, the average learning aid would save …


Economic Savings For Scientific Free And Open Source Technology: A Review, Joshua M. Pearce Oct 2020

Economic Savings For Scientific Free And Open Source Technology: A Review, Joshua M. Pearce

Michigan Tech Publications

Both the free and open source software (FOSS) as well as the distributed digital manufacturing of free and open source hardware (FOSH) has shown particular promise among scientists for developing custom scientific tools. Early research found substantial economic savings for these technologies, but as the open source design paradigm has grown by orders of magnitude it is possible that the savings observed in the early work was isolated to special cases. Today there are examples of open source technology for science in the vast majority of disciplines and several resources dedicated specifically to publishing them. Do the tremendous economic savings …


Towards Distributed Recycling With Additive Manufacturing Of Pet Flake Feedstocks, Helen A. Little, Nagendra Gautam Tanikella, Matthew J. Reich, Matthew J. Fiedler, Samantha L. Snabes, Joshua M. Pearce Sep 2020

Towards Distributed Recycling With Additive Manufacturing Of Pet Flake Feedstocks, Helen A. Little, Nagendra Gautam Tanikella, Matthew J. Reich, Matthew J. Fiedler, Samantha L. Snabes, Joshua M. Pearce

Michigan Tech Publications

This study explores the potential to reach a circular economy for post-consumer Recycled Polyethylene Terephthalate (rPET) packaging and bottles by using it as a Distributed Recycling for Additive Manufacturing (DRAM) feedstock. Specifically, for the first time, rPET water bottle flake is processed using only an open source toolchain with Fused Particle Fabrication (FPF) or Fused Granular Fabrication (FGF) processing rather than first converting it to filament. In this study, first the impact of granulation, sifting, and heating (and their sequential combination) is quantified on the shape and size distribution of the rPET flakes. Then 3D printing tests were performed on …


Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

This study provides designs for a low-cost, easily replicable open-source lab-grade digital scale that can be used as a precision balance. The design is such that it can be manufactured for use in most labs throughout the world with open-source RepRap-class material extrusion-based 3-D printers for the mechanical components and readily available open-source electronics including the Arduino Nano. Several versions of the design were fabricated and tested for precision and accuracy for a range of load cells. The results showed the open-source scale was found to be repeatable within 0.05 g with multiple load cells, with even better precision (0.005 …


Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce Oct 2019

Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce

Michigan Tech Publications

In order to accelerate deployment of distributed recycling by providing low-cost feed stocks of granulated post-consumer waste plastic, this study analyzes an open source waste plastic granulator system. It is designed, built, and tested for its ability to convert post-consumer waste, 3D printed products and waste into polymer feedstock for recyclebots of fused particle/granule printers. The technical specifications of the device are quantified in terms of power consumption (380 to 404 W for PET and PLA, respectively) and particle size distribution. The open source device can be fabricated for less than $2000 USD in materials. The experimentally measured power use …


Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce May 2019

Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm2 was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ASTM-approved …


Open Source Completely 3-D Printable Centrifuge, Salil S. Sule, Aliaksei Petsiuk, Joshua M. Pearce May 2019

Open Source Completely 3-D Printable Centrifuge, Salil S. Sule, Aliaksei Petsiuk, Joshua M. Pearce

Michigan Tech Publications

Centrifuges are commonly required devices in medical diagnostics facilities as well as scientific laboratories. Although there are commercial and open source centrifuges, the costs of the former and the required electricity to operate the latter limit accessibility in resource-constrained settings. There is a need for low-cost, human-powered, verified, and reliable lab-scale centrifuges. This study provides the designs for a low-cost 100% 3-D printed centrifuge, which can be fabricated on any low-cost RepRap-class (self-replicating rapid prototyper) fused filament fabrication (FFF)- or fused particle fabrication (FPF)-based 3-D printer. In addition, validation procedures are provided using a web camera and free and open …


Economic Potential For Distributed Manufacturing Of Adaptive Aids For Arthritis Patients N The U.S., Nicole Gallup, Jennifer Bow, Joshua M. Pearce Dec 2018

Economic Potential For Distributed Manufacturing Of Adaptive Aids For Arthritis Patients N The U.S., Nicole Gallup, Jennifer Bow, Joshua M. Pearce

Department of Materials Science and Engineering Publications

By 2040, more than a quarter of the U.S. population will have diagnosed arthritic conditions. Adults with arthritis and other rheumatic conditions earn less than average yet have medical care expenditures that are over 12% of average household income. Adaptive aids can help arthritis patients continue to maintain independence and quality of life; however, their high costs limit accessibility for older people and the poor. One method used for consumer price reduction is distributed manufacturing with 3-D printers. In order to assess if such a method would be financially beneficial, this study evaluates the techno-economic viability of distributed manufacturing of …


3-D Printable Polymer Pelletizer Chopper For Fused Granular Fabrication-Based Additive Manufacturing, Aubrey Woern, Joshua M. Pearce Nov 2018

3-D Printable Polymer Pelletizer Chopper For Fused Granular Fabrication-Based Additive Manufacturing, Aubrey Woern, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Although distributed additive manufacturing can provide high returns on investment, the current markup on commercial filament over base polymers limits deployment. These cost barriers can be surmounted by eliminating the entire process of fusing filament by three-dimensional (3-D) printing products directly from polymer granules. Fused granular fabrication (FGF) (or fused particle fabrication (FPF)) is being held back in part by the accessibility of low-cost pelletizers and choppers. An open-source 3-D printable invention disclosed here allows for precisely controlled pelletizing of both single thermopolymers as well as composites for 3-D printing. The system is designed, built, and tested for its ability …


Belt-Driven Open Source Circuit Mill Using Low-Cost 3-D Printer Components, Shane W. Oberloier, Joshua M. Pearce Sep 2018

Belt-Driven Open Source Circuit Mill Using Low-Cost 3-D Printer Components, Shane W. Oberloier, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Barriers to inventing electronic devices involve challenges of iterating electronic designs due to long lead times for professional circuit board milling or high costs of commercial milling machines. To overcome these barriers, this study provides open source (OS) designs for a low-cost circuit milling machine. First, design modifications for mechanical and electrical subsystems of the OS Distributed 3-D (D3D) Robotics prototyping system are provided. Next, Copper Carve, an OS custom graphical user interface, is developed to enable circuit board milling by implementing backlash and substrate distortion compensation. The performance of the OS D3D circuit mill is then quantified and validated …


Self-Sufficiency Of 3-D Printers: Utilizing Stand-Alone Solar Photovoltaic Power Systems, Khalid Yousuf Khan, Lucia Gauchia, Joshua M. Pearce May 2018

Self-Sufficiency Of 3-D Printers: Utilizing Stand-Alone Solar Photovoltaic Power Systems, Khalid Yousuf Khan, Lucia Gauchia, Joshua M. Pearce

Department of Materials Science and Engineering Publications

A self-replicating rapid prototyper (RepRap) is a type of 3-D printer capable of printing many of its own components in addition to a wide assortment of products from high-value scientific or medical tools to household products and toys. There is some evidence that these printers could provide low-cost distributed manufacturing in underprivileged rural areas. For the most isolated communities without access to the electric grid, a low-cost alternative energy is needed. Solar energy can be harvested through a stand-alone photovoltaic (PV) power system specifically designed to match the needs of the RepRap. The voltage and current requirement for the printer …


Design Optimization Of Polymer Heat Exchanger For Automated Household-Scale Solar Water Pasteurizer, David C. Denkenberger, Joshua M. Pearce Apr 2018

Design Optimization Of Polymer Heat Exchanger For Automated Household-Scale Solar Water Pasteurizer, David C. Denkenberger, Joshua M. Pearce

Civil and Architectural Engineering Faculty Research

A promising approach to reducing the >870,000 deaths/year globally from unsafe water is flow-through solar water pasteurization systems (SWPs). Unfortunately, demonstrated systems have high capital costs, which limits access for the poor. The most expensive component of such systems is the heat exchanger (HX). Thus, this study focuses on cost optimization of HX designs for flow-through SWPs using high-effectiveness polymer microchannel HXs. The theoretical foundation for the cost optimization of a polymer microchannel HX is provided, and outputs are plotted in order to provide guidelines for designers to perform HX optimizations. These plots are used in two case studies: (1) …


Design Optimization Of Polymer Heat Exchanger For Automated Household-Scale Solar Water Pasteurizer, David C. Denkenberger, Joshua M. Pearce Apr 2018

Design Optimization Of Polymer Heat Exchanger For Automated Household-Scale Solar Water Pasteurizer, David C. Denkenberger, Joshua M. Pearce

Department of Materials Science and Engineering Publications

A promising approach to reducing the >870,000 deaths/year globally from unsafe water is flow-through solar water pasteurization systems (SWPs). Unfortunately, demonstrated systems have high capital costs, which limits access for the poor. The most expensive component of such systems is the heat exchanger (HX). Thus, this study focuses on cost optimization of HX designs for flow-through SWPs using high-effectiveness polymer microchannel HXs. The theoretical foundation for the cost optimization of a polymer microchannel HX is provided, and outputs are plotted in order to provide guidelines for designers to perform HX optimizations. These plots are used in two case studies: (1) …


Development Of A Resilient 3-D Printer For Humanitarian Crisis Response, Benjamin L. Savonen, Tobias Mahan, Maxwell W. Curtis, Jared W. Schreier, John K. Greshonen, Joshua M. Pearce Mar 2018

Development Of A Resilient 3-D Printer For Humanitarian Crisis Response, Benjamin L. Savonen, Tobias Mahan, Maxwell W. Curtis, Jared W. Schreier, John K. Greshonen, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Rapid manufacturing using 3-D printing is a potential solution to some of the most pressing issues for humanitarian logistics. In this paper, findings are reported from a study that involved development of a new type of 3-D printer. In particular, a novel 3-D printer that is designed specifically for reliable rapid manufacturing at the sites of humanitarian crises. First, required capabilities are developed with design elements of a humanitarian 3-D printer, which include, (1) fused filament fabrication, (2) open source self-replicating rapid prototyper design, (3) modular, (4) separate frame, (5) protected electronics, (6) on-board computing, (7) flexible power supply, and …


General Design Procedure For Free And Open-Source Hardware For Scientific Equipment, Shane W. Oberloier, Joshua M. Pearce Dec 2017

General Design Procedure For Free And Open-Source Hardware For Scientific Equipment, Shane W. Oberloier, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Distributed digital manufacturing of free and open-source scientific hardware (FOSH) used for scientific experiments has been shown to in general reduce the costs of scientific hardware by 90–99%. In part due to these cost savings, the manufacturing of scientific equipment is beginning to move away from a central paradigm of purchasing proprietary equipment to one in which scientists themselves download open-source designs, fabricate components with digital manufacturing technology, and then assemble the equipment themselves. This trend introduces a need for new formal design procedures that designers can follow when targeting this scientific audience. This study provides five steps in the …


Distributed Manufacturing Of Flexible Products: Technical Feasibility And Economic Viability, Aubrey Woern, Joshua M. Pearce Oct 2017

Distributed Manufacturing Of Flexible Products: Technical Feasibility And Economic Viability, Aubrey Woern, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Distributed manufacturing even at the household level is now well established with the combined use of open source designs and self-replicating rapid prototyper (RepRap) 3-D printers. Previous work has shown substantial economic consumer benefits for producing their own polymer products. Now flexible filaments are available at roughly 3-times the cost of more conventional 3-D printing materials. To provide some insight into the potential for flexible filament to be both technically feasible and economically viable for distributed digital manufacturing at the consumer level this study investigates 20 common flexible household products. The 3-D printed products were quantified by print time, electrical …


Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce Jul 2017

Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce

Department of Materials Science and Engineering Publications

3-D printing has entered the consumer market because of recent radical price declines. Consumers can save substantial money by offsetting purchases with DIY pre-designed 3-D printed products. However, even more value can be obtained with distributed manufacturing using mass customization. Unfortunately, the average consumer is not technically sophisticated enough to easily design their own products. One solution to this is the use of an overlay on OpenSCAD parametric code, although current solutions force users to relinquish all rights to their own designs. There is thus a substantial need in the open source design community for a libre 3-D model customizer, …


Energy Payback Time Of A Solar Photovoltaic Powered Waste Plastic Recyclebot System, Shan Zhong, Pratiksha Rakhe, Joshua M. Pearce Jun 2017

Energy Payback Time Of A Solar Photovoltaic Powered Waste Plastic Recyclebot System, Shan Zhong, Pratiksha Rakhe, Joshua M. Pearce

Department of Materials Science and Engineering Publications

The growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filaments from waste plastic. This study quantifies the embodied energy of a vertical DC solar photovoltaic (PV) powered recyclebot based on life cycle energy analysis and compares it to horizontal AC recyclebots, conventional recycling, and the production of a virgin 3-D printer filament. The energy payback time (EPBT) is calculated using the embodied energy of the materials making up the recyclebot itself and is found to be about five days for the extrusion of a poly lactic acid (PLA) filament or 2.5 …


Emergence Of Home Manufacturing In The Developed World: Return On Investment For Open-Source 3-D Printers., Emily E. Petersen, Joshua M. Pearce Feb 2017

Emergence Of Home Manufacturing In The Developed World: Return On Investment For Open-Source 3-D Printers., Emily E. Petersen, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Through reduced 3-D printer cost, increased usability, and greater material selection, additive manufacturing has transitioned from business manufacturing to the average prosumer. This study serves as a representative model for the potential future of 3-D printing in the average American household by employing a printer operator who was relatively unfamiliar with 3-D printing and the 3-D design files of common items normally purchased by the average consumer. Twenty-six items were printed in thermoplastic and a cost analysis was performed through comparison to comparable, commercially available products at a low and high price range. When compared to the low-cost items, investment …


Free And Open-Source Control Software For 3-D Motion And Processing, Bas Wijnen, G. C. Anzalone, Amberlee S. Haselhuhn, Paul G. Sanders, Joshua M. Pearce Jan 2016

Free And Open-Source Control Software For 3-D Motion And Processing, Bas Wijnen, G. C. Anzalone, Amberlee S. Haselhuhn, Paul G. Sanders, Joshua M. Pearce

Department of Materials Science and Engineering Publications

RepRap 3-D printers and their derivatives using conventional firmware are limited by: 1) requiring technical knowledge, 2) poor resilience with unreliable hardware, and 3) poor integration in complicated systems. In this paper, a new control system called Franklin, for CNC machines in general and 3-D printers specifically, is presented that enables web-based three dimensional control of additive, subtractive and analytical tools from any Internet connected device. Franklin can be set up and controlled entirely from a web interface; it uses a custom protocol which allows it to continue printing when the connection is temporarily lost, and allows communication with scripts.


High-Efficiency Solar-Powered 3-D Printers For Sustainable Development, Jephias Gwamuri, Dhiogo Franco, Khalid Khan, Lucia Gauchia, Joshua M. Pearce Jan 2016

High-Efficiency Solar-Powered 3-D Printers For Sustainable Development, Jephias Gwamuri, Dhiogo Franco, Khalid Khan, Lucia Gauchia, Joshua M. Pearce

Michigan Tech Publications

The release of the open source 3-D printer known as the RepRap (a self-Replicating Rapid prototyper) resulted in the potential for distributed manufacturing of products for significantly lower costs than conventional manufacturing. This development, coupled with open source-appropriate technology (OSAT), has enabled the opportunity for 3-D printers to be used for sustainable development. In this context, OSAT provides the opportunity to modify and improve the physical designs of their printers and desired digitally-shared objects. However, these 3-D printers require electricity while more than a billion people still lack electricity. To enable the utilization of RepRaps in off-grid communities, solar photovoltaic …


In Situ Formation Of Substrate Release Mechanisms For Gas Metal Arc Weld Metal 3-D Printing, Amberlee S. Haselhuhn, Bas Wijnen, Gerald C. Anzalone, Paul G. Sanders, Joshua M. Pearce Jul 2015

In Situ Formation Of Substrate Release Mechanisms For Gas Metal Arc Weld Metal 3-D Printing, Amberlee S. Haselhuhn, Bas Wijnen, Gerald C. Anzalone, Paul G. Sanders, Joshua M. Pearce

Department of Materials Science and Engineering Publications

This study provides an in-depth investigation into low-cost and no-cost substrate release mechanisms that allow gas metal arc weld 3-D printed ER4043 aluminum and ER70S-6 steel parts to be removed from a reusable print substrate with minimal energy. Aluminum oxide, boron nitride, and titanium nitride coatings were evaluated as possible substrate release agents for aluminum printing. Additionally, the in situ formation of substrate release agents such as intermetallics and oxides were tested for both aluminum and steel printing. Testing was performed with a modified Charpy impact tester to remove 3-D printed metal parts from an 1100 aluminum or A36 low …


Applications Of Open Source 3-D Printing On Small Farms, Joshua M. Pearce Apr 2015

Applications Of Open Source 3-D Printing On Small Farms, Joshua M. Pearce

Department of Materials Science and Engineering Publications

There is growing evidence that low-cost open-source 3-D printers can reduce costs by enabling distributed manufacturing of substitutes for both specialty equipment and conventional mass-manufactured products. The rate of 3-D printable designs under open licenses is growing exponentially and there arealready hundreds of designs applicable to small-scale organic farming. It has also been hypothesized that this technology could assist sustainable development in rural communities that rely on small-scale organic agriculture. To gauge the present utility of open-source 3-D printers in this organic farm context both in the developed and developing world, this paper reviews the current open-source designs available and …


Polymer Recycling Codes For Distributed Manufacturing With 3-D Printers, Emily J. Hunt, Chenlong Zhang, Nicholas C. Anzalone, Joshua M. Pearce Mar 2015

Polymer Recycling Codes For Distributed Manufacturing With 3-D Printers, Emily J. Hunt, Chenlong Zhang, Nicholas C. Anzalone, Joshua M. Pearce

Department of Materials Science and Engineering Publications

With the aggressive cost reductions for 3-D printing made available by the open-source self-replicating rapid prototypers (RepRaps) the economic advantage of custom distributed manufacturing has become substantial. In addition, the number of free designs is growing exponentially and the development and commercialization of the recyclebot (plastic extruders that fabricate 3-D printing filament from recycled or virgin materials) have greatly improved the material selection available for prosumer 3-D printer operators. These trends indicate that more individuals will manufacturer their own polymer products, however, there is a risk that an even larger fraction of polymer waste will not be recycled because it …


Reversing The Trend Of Large Scale And Centralization In Manufacturing: The Case Of Distributed Manufacturing Of Customizable 3-D-Printable Self-Adjustable Glasses, Jephias Gwamuri, Ben T. Wittbrodt, Nick C. Anzalone, Joshua M. Pearce Dec 2014

Reversing The Trend Of Large Scale And Centralization In Manufacturing: The Case Of Distributed Manufacturing Of Customizable 3-D-Printable Self-Adjustable Glasses, Jephias Gwamuri, Ben T. Wittbrodt, Nick C. Anzalone, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Although the trend in manufacturing has been towards centralization to leverage economies of scale, the recent rapid technical development of open-source 3-D printers enables low-cost distributed bespoke production. This paper explores the potential advantages of a distributed manufacturing model of high-value products by investigating the application of 3-D printing to self-refraction eyeglasses. A series of parametric 3-D printable designs is developed, fabricated and tested to overcome limitations identified with mass-manufactured self-correcting eyeglasses designed for the developing world's poor. By utilizing 3-D printable self-adjustable glasses, communities not only gain access to far more diversity in product design, as the glasses can …


Evaluation Of Potential Fair Trade Standards For An Ethical 3-D Printing Filament, Savanna R. Feeley, Bas Wijnen, Joshua M. Pearce Sep 2014

Evaluation Of Potential Fair Trade Standards For An Ethical 3-D Printing Filament, Savanna R. Feeley, Bas Wijnen, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Following the rapid rise of distributed additive manufacturing with 3-D printing has come the technical development of filament extruders and recyclebots, which can turn both virgin polymer pellets and post-consumer shredded plastic into 3-D filament. Similar to the solutions proposed for other forms of ethical manufacturing, it is possible to consider a form of ethical 3-D printer filament distribution being developed. There is a market opportunity for producing this ethical 3-D printer filament, which is addressed in this paper by developing an “ethical product standard” for 3-D filament based upon a combination of existing fair-trade standards and technical and life …


Life-Cycle Economic Analysis Of Distributed Manufacturing With Open-Source 3-D Printers, Ben T. Wittbrodt, A. G. Glover, J. Laureto, G. C. Anzalone, D. Oppliger, J. L. Irwin, Joshua M. Pearce Jul 2013

Life-Cycle Economic Analysis Of Distributed Manufacturing With Open-Source 3-D Printers, Ben T. Wittbrodt, A. G. Glover, J. Laureto, G. C. Anzalone, D. Oppliger, J. L. Irwin, Joshua M. Pearce

Department of Materials Science and Engineering Publications

The recent development of open-source 3-D printers makes scaling of distributed additive-based manufacturing of high-value objects technically feasible and offers the potential for widespread proliferation of mechatronics education and participation. These self-replicating rapid prototypers (RepRaps) can manufacture approximately half of their own parts from sequential fused deposition of polymer feedstocks. RepRaps have been demonstrated for conventional prototyping and engineering, customizing scientific equipment, and appropriate technology-related manufacturing for sustainable development. However, in order for this technology to proliferate like 2-D electronic printers have, it must be economically viable for a typical household. This study reports on the life-cycle economic analysis (LCEA) …