Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

2006

Marquette University

Chemistry

Electron paramagnetic resonance

Articles 1 - 1 of 1

Full-Text Articles in Entire DC Network

Kinetic And Spectroscopic Characterization Of The E134a- And E134d-Altered Dape-Encoded N-Succinyl-L,L-Diaminopimelic Acid Desuccinylase From Haemophilus Influenzae, Ryan S. Davis, David L. Bienvenue, Sabina I. Swierczek, Danuta M. Gilner, Lakshman Rajagopal, Brian Bennett, Richard C. Holz Mar 2006

Kinetic And Spectroscopic Characterization Of The E134a- And E134d-Altered Dape-Encoded N-Succinyl-L,L-Diaminopimelic Acid Desuccinylase From Haemophilus Influenzae, Ryan S. Davis, David L. Bienvenue, Sabina I. Swierczek, Danuta M. Gilner, Lakshman Rajagopal, Brian Bennett, Richard C. Holz

Physics Faculty Research and Publications

Glutamate-134 (E134) is proposed to act as the general acid/base during the hydrolysis reaction catalyzed by the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae. To date, no direct evidence has been reported for the role of E134 during catalytic turnover by DapE. In order to elucidate the catalytic role of E134, altered DapE enzymes were prepared in which E134 was substituted with an alanine and an aspartate residue. The Michaelis constant (K m) does not change upon substitution with aspartate but the rate of the reaction changes drastically in the following order: glutamate (100% …