Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 75

Full-Text Articles in Entire DC Network

Dynamic Function Learning Through Control Of Ensemble Systems, Wei Zhang, Vignesh Narayanan, Jr-Shin Li Jan 2023

Dynamic Function Learning Through Control Of Ensemble Systems, Wei Zhang, Vignesh Narayanan, Jr-Shin Li

Publications

Learning tasks involving function approximation are preva- lent in numerous domains of science and engineering. The underlying idea is to design a learning algorithm that gener- ates a sequence of functions converging to the desired target function with arbitrary accuracy by using the available data samples. In this paper, we present a novel interpretation of iterative function learning through the lens of ensemble dy- namical systems, with an emphasis on establishing the equiv- alence between convergence of function learning algorithms and asymptotic behavior of ensemble systems. In particular, given a set of observation data in a function learning task, we …


Response Of Planetary Waves And Tides To The 2019 Southern Hemisphere Ssw And Q2dw Enhancement In Jan-Feb 2020 Observed By Condor Meteor Radar In Chile And Adelaide Meteor Radar In Australia, Alan Liu, Zishun Qiao, Iain Reid, Javier Fuentes, Chris Adami Nov 2022

Response Of Planetary Waves And Tides To The 2019 Southern Hemisphere Ssw And Q2dw Enhancement In Jan-Feb 2020 Observed By Condor Meteor Radar In Chile And Adelaide Meteor Radar In Australia, Alan Liu, Zishun Qiao, Iain Reid, Javier Fuentes, Chris Adami

Publications

A new multi-static meteor radar (CONDOR) has recently been installed in northern Chile. This CONDOR meteor radar (30.3°S, 70.7°W) and the Adelaide meteor radar (35°S, 138°E) have provided longitudinally spaced observations of the mean winds, tides and planetary waves of the PW-tides interaction cases we present here. We have observed a Quasi-6-Day Wave (Q6DW) enhancement in MLT winds at the middle latitudes (30.3°S, 35°S) during the unusual minor South Hemisphere SSW 2019 by the ground-based meteor radars. Tidal analysis also indicates modulation of the Q6DW w/ amplitude ~15 [m/s] and diurnal tides w/ amplitude ~60 [m/s]. Another case we present …


Statistical Characteristics Of High-Frequency Gravity Waves Observed By An Airglow Imager At Andes Lidar Observatory, Alan Z. Liu, Bing Cao May 2022

Statistical Characteristics Of High-Frequency Gravity Waves Observed By An Airglow Imager At Andes Lidar Observatory, Alan Z. Liu, Bing Cao

Publications

The long-term statistical characteristics of high-frequency quasi-monochromatic gravity waves are presented using multi-year airglow images observed at Andes Lidar Observatory (ALO, 30.3° S, 70.7° W) in northern Chile. The distribution of primary gravity wave parameters including horizontal wavelength, vertical wavelength, intrinsic wave speed, and intrinsic wave period are obtained and are in the ranges of 20–30 km, 15–25 km, 50–100 m s−1, and 5–10 min, respectively. The duration of persistent gravity wave events captured by the imager approximately follows an exponential distribution with an average duration of 7–9 min. The waves tend to propagate against the local background winds and …


Interpretable Design Of Reservoir Computing Networks Using Realization Theory, Wei Miao, Vignesh Narayanan, Jr-Shin Li Jan 2022

Interpretable Design Of Reservoir Computing Networks Using Realization Theory, Wei Miao, Vignesh Narayanan, Jr-Shin Li

Publications

The reservoir computing networks (RCNs) have been successfully employed as a tool in learning and complex decision-making tasks. Despite their efficiency and low training cost, practical applications of RCNs rely heavily on empirical design. In this article, we develop an algorithm to design RCNs using the realization theory of linear dynamical systems. In particular, we introduce the notion of α-stable realization and provide an efficient approach to prune the size of a linear RCN without deteriorating the training accuracy. Furthermore, we derive a necessary and sufficient condition on the irreducibility of the number of hidden nodes in linear RCNs based …


The Causal Topology Of Neutral 4-Manifolds With Null Boundary, Nikos Georgiou, Brendan Guilfoyle Jan 2021

The Causal Topology Of Neutral 4-Manifolds With Null Boundary, Nikos Georgiou, Brendan Guilfoyle

Publications

This paper considers aspects of 4-manifold topology from the point of view of the null cone of a neutral metric, a point of view we call neutral causal topology. In particular, we construct and investigate neutral 4-manifolds with null boundaries that arise from canonical 3- and 4-dimensional settings. A null hypersurface is foliated by its normal and, in the neutral case, inherits a pair of totally null planes at each point. This paper focuses on these plane bundles in a number of classical settings The first construction is the conformal compactification of flat neutral 4- space into the 4-ball. The …


Fredholm-Regularity Of Holomorphic Discs In Plane Bundles Over Compact Surfaces, Brendan Guilfoyle, Wilhelm Klingenberg Nov 2020

Fredholm-Regularity Of Holomorphic Discs In Plane Bundles Over Compact Surfaces, Brendan Guilfoyle, Wilhelm Klingenberg

Publications

We study the space of holomorphic discs with boundary on a surface in a real 2-dimensional vector bundle over a compact 2-manifold. We prove that, if the ambient 4-manifold admits a fibre-preserving transitive holomorphic action, then a section with a single complex point has C2,α-close sections such that any (non-multiply covered) holomorphic disc with boundary in these sections are Fredholm regular. Fredholm regularity is also established when the complex surface is neutral K¨ahler, the action is both holomorphic and symplectic, and the section is Lagrangian with a single complex point.


Dynamics Of Discontinuities In Elastic Solids, Arkadi Berezovski, Mihhail Berezovski Jul 2020

Dynamics Of Discontinuities In Elastic Solids, Arkadi Berezovski, Mihhail Berezovski

Publications

The paper is devoted to evolving discontinuities in elastic solids. A discontinuity is represented as a singular set of material points. Evolution of a discontinuity is driven by the configurational force acting at such a set. The main attention is paid to the determination of the velocity of a propagating discontinuity. Martensitic phase transition fronts and brittle cracks are considered as representative examples.


2n-Dimensional Canonical Systems And Applications, Andrei Ludu, Keshav Baj Acharya Jun 2020

2n-Dimensional Canonical Systems And Applications, Andrei Ludu, Keshav Baj Acharya

Publications

We study the 2N-dimensional canonical systems and discuss some properties of its fundamental solution. We then discuss the Floquet theory of periodic canonical systems and observe the asymptotic behavior of its solution. Some important physical applications of the systems are also discussed: linear stability of periodic Hamiltonian systems, position-dependent effective mass, pseudo-periodic nonlinear water waves, and Dirac systems.


Meshless Modeling Of Flow Dispersion And Progressive Piping In Poroelastic Levees, Anthony Khoury, Eduardo Divo, Alain J. Kassab, Sai Kakuturu, Lakshmi Reddi Jun 2019

Meshless Modeling Of Flow Dispersion And Progressive Piping In Poroelastic Levees, Anthony Khoury, Eduardo Divo, Alain J. Kassab, Sai Kakuturu, Lakshmi Reddi

Publications

Performance data on earth dams and levees continue to indicate that piping is one of the major causes of failure. Current criteria for prevention of piping in earth dams and levees have remained largely empirical. This paper aims at developing a mechanistic understanding of the conditions necessary to prevent piping and to enhance the likelihood of self-healing of cracks in levees subjected to hydrodynamic loading from astronomical and meteorological (including hurricane storm surge-induced) forces. Systematic experimental investigations are performed to evaluate erosion in finite-length cracks as a result of transient hydrodynamic loading. Here, a novel application of the localized collocation …


Mean Curvature Flow Of Compact Spacelike Submanifolds In Higher Codimension, Brendan Guilfoyle, Wilhelm Klingenberg Feb 2019

Mean Curvature Flow Of Compact Spacelike Submanifolds In Higher Codimension, Brendan Guilfoyle, Wilhelm Klingenberg

Publications

We prove long-time existence for mean curvature flow of a smooth n-dimensional spacelike submanifold of an n + m dimensional manifold whose metric satisfies the timelike curvature condition.


Nonlocal Symmetries For Time-Dependent Order Differential Equations, Andrei Ludu Dec 2018

Nonlocal Symmetries For Time-Dependent Order Differential Equations, Andrei Ludu

Publications

A new type of ordinary differential equation is introduced and discussed: time-dependent order ordinary differential equations. These equations are solved via fractional calculus by transforming them into Volterra integral equations of second kind with singular integrable kernel. The solutions of the time-dependent order differential equation represent deformations of the solutions of the classical (integer order) differential equations, mapping them into one-another as limiting cases. This equation can also move, remove or generate singularities without involving variable coefficients. An interesting symmetry of the solution in relation to the Riemann zeta function and Harmonic numbers is observed.


Full Field Computing For Elastic Pulse Dispersion In Inhomogeneous Bars, A. Berezovski, R. Kolman, M. Berezovski, D. Gabriel, V. Adamek Jul 2018

Full Field Computing For Elastic Pulse Dispersion In Inhomogeneous Bars, A. Berezovski, R. Kolman, M. Berezovski, D. Gabriel, V. Adamek

Publications

In the paper, the finite element method and the finite volume method are used in parallel for the simulation of a pulse propagation in periodically layered composites beyond the validity of homogenization methods. The direct numerical integration of a pulse propagation demonstrates dispersion effects and dynamic stress redistribution in physical space on example of a one-dimensional layered bar. Results of numerical simulations are compared with analytical solution constructed specifically for the considered problem. Analytical solution as well as numerical computations show the strong influence of the composition of constituents on the dispersion of a pulse in a heterogeneous bar and …


Patient-Specific Multiscale Computational Fluid Dynamics Assessment Of Embolization Rates In The Hybrid Norwood: Effects Of Size And Placement Of The Reverse Blalock–Taussig Shunt, Ray Prather, John Seligson, Marcus Ni, Eduardo Divo, Alain J. Kassab, William Decampli May 2018

Patient-Specific Multiscale Computational Fluid Dynamics Assessment Of Embolization Rates In The Hybrid Norwood: Effects Of Size And Placement Of The Reverse Blalock–Taussig Shunt, Ray Prather, John Seligson, Marcus Ni, Eduardo Divo, Alain J. Kassab, William Decampli

Publications

The hybrid Norwood operation is performed to treat hypoplastic left heart syndrome. Distal arch obstruction may compromise flow to the brain. In a variant of this procedure, a synthetic graft (reverse Blalock–Taussig shunt) is placed between the pulmonary trunk and innominate artery to improve upper torso blood flow. Thrombi originating in the graft may embolize to the brain. In this study, we used computational fluid dynamics and particle tracking to investigate the patterns of particle embolization as a function of the anatomic position of the reverse Blalock–Taussig shunt. The degree of distal arch obstruction and position of particle origin influence …


Godunov-Type Upwind Flux Schemes Of The Two-Dimensional Finite Volume Discrete Boltzmann Method, Leitao Chen, Laura Schaefer May 2018

Godunov-Type Upwind Flux Schemes Of The Two-Dimensional Finite Volume Discrete Boltzmann Method, Leitao Chen, Laura Schaefer

Publications

A simple unified Godunov-type upwind approach that does not need Riemann solvers for the flux calculation is developed for the finite volume discrete Boltzmann method (FVDBM) on an unstructured cell-centered triangular mesh. With piecewise-constant (PC), piecewise-linear (PL) and piecewise-parabolic (PP) reconstructions, three Godunov-type upwind flux schemes with different orders of accuracy are subsequently derived. After developing both a semi-implicit time marching scheme tailored for the developed flux schemes, and a versatile boundary treatment that is compatible with all of the flux schemes presented in this paper, numerical tests are conducted on spatial accuracy for several single-phase flow problems. Four major …


Stability Of Solitary And Cnoidal Traveling Wave Solutions For A Fifth Order Korteweg-De Vries Equation, Ronald Adams, S.C. Mancas Mar 2018

Stability Of Solitary And Cnoidal Traveling Wave Solutions For A Fifth Order Korteweg-De Vries Equation, Ronald Adams, S.C. Mancas

Publications

We establish the nonlinear stability of solitary waves (solitons) and periodic traveling wave solutions (cnoidal waves) for a Korteweg-de Vries (KdV) equation which includes a fifth order dispersive term. The traveling wave solutions which yield solitons for zero boundary conditions and wave-trains of cnoidal waves for nonzero boundary conditions are analyzed using stability theorems, which rely on the positivity properties of the Fourier transforms. We show that all families of solutions considered here are (orbitally) stable.


Numerical Simulation Of Energy Localization In Dynamic Materials, Arkadi Berezovski, Mihhail Berezovski Feb 2018

Numerical Simulation Of Energy Localization In Dynamic Materials, Arkadi Berezovski, Mihhail Berezovski

Publications

Dynamic materials are artificially constructed in such a way that they may vary their characteristic properties in space or in time, or both, by an appropriate arrangement or control. These controlled changes in time can be provided by the application of an external (non-mechanical) field, or through a phase transition. In principle, all materials change their properties with time, but very slowly and smoothly. Changes in properties of dynamic materials should be realized in a short or quasi-nil time lapse and over a sufficiently large material region. Wave propagation is a characteristic feature for dynamic materials because it is also …


Differential Equations Of Dynamical Order, Andrei Ludu, Harihar Khanal Nov 2017

Differential Equations Of Dynamical Order, Andrei Ludu, Harihar Khanal

Publications

No abstract provided.


Parabolic Classical Curvature Flows, Brendan Guilfoyle, Wilhelm Klingenberg Sep 2017

Parabolic Classical Curvature Flows, Brendan Guilfoyle, Wilhelm Klingenberg

Publications

We consider classical curvature flows: 1-parameter families of convex embeddings of the 2-sphere into Euclidean 3-space, which evolve by an arbitrary (nonhomogeneous) function of the radii of curvature (RoC). We determine conditions for parabolic flows that ensure the boundedness of various geometric quantities and investigate some examples. As a new tool, we introduce the RoC diagram of a surface and its hyperbolic or anti-de Sitter metric. The relationship between the RoC diagram and the properties of Weingarten surfaces is also discussed.


A Regression Model To Predict Stock Market Mega Movements And/Or Volatility Using Both Macroeconomic Indicators & Fed Bank Variables, Timothy A. Smith, Alcuin Rajan Sep 2017

A Regression Model To Predict Stock Market Mega Movements And/Or Volatility Using Both Macroeconomic Indicators & Fed Bank Variables, Timothy A. Smith, Alcuin Rajan

Publications

In finance, regression models or time series moving averages can be used to determine the value of an asset based on its underlying traits. In prior work we built a regression model to predict the value of the S&P 500 based on macroeconomic indicators such as gross domestic product, money supply, produce price and consumer price indices. In this present work this model is updated both with more data and an adjustment in the input variables to improve the coefficient of determination. A scheme is also laid out to alternately define volatility rather than using common tools such as the …


Traveling Wave Solutions To Kawahara And Related Equations, S.C. Mancas Jun 2017

Traveling Wave Solutions To Kawahara And Related Equations, S.C. Mancas

Publications

Traveling wave solutions to Kawahara equation (KE), transmission line (TL), and Korteweg-de Vries (KdV) equation are found by using an elliptic function method which is more general than the tanh-method. The method works by assuming that a polynomial ansatz satisfies a Weierstrass equation, and has two advantages: first, it reduces the number of terms in the ansatz by an order of two, and second, it uses Weierstrass functions which satisfy an elliptic equation for the dependent variable instead of the hyperbolic tangent functions which only satisfy the Riccati equation with constant coefficients. When the polynomial ansatz in the traveling wave …


Generalized Thomas-Fermi Equations As The Lampariello Class Of Emden-Fowler Equations, Haret C. Rosu, S.C. Mancas Apr 2017

Generalized Thomas-Fermi Equations As The Lampariello Class Of Emden-Fowler Equations, Haret C. Rosu, S.C. Mancas

Publications

A one-parameter family of Emden-Fowler equations defined by Lampariello’s parameter p which, upon using Thomas-Fermi boundary conditions, turns into a set of generalized Thomas-Fermi equations comprising the standard Thomas-Fermi equation for p = 1 is studied in this paper. The entire family is shown to be non integrable by reduction to the corresponding Abel equations whose invariants do not satisfy a known integrability condition. We also discuss the equivalent dynamical system of equations for the standard Thomas-Fermi equation and perform its phase-plane analysis. The results of the latter analysis are similar for the whole class.


An Rbf Interpolation Blending Scheme For Effective Shock-Capturing, M. Harris, Eduardo Divo, Alain J. Kassab Apr 2017

An Rbf Interpolation Blending Scheme For Effective Shock-Capturing, M. Harris, Eduardo Divo, Alain J. Kassab

Publications

In recent years significant focus has been given to the study of Radial basis functions (RBF), especially in their use on solving partial differential equations (PDE). RBF have an impressive capability of inter- polating scattered data, even when this data presents localized discontinuities. However, for infinitely smooth RBF such as the Multiquadrics, inverse Multiquadrics, and Gaussian, the shape parameter must be chosen properly to obtain accurate approximations while avoiding ill-conditioning of the interpolating matrices. The optimum shape parameter can vary significantly depending on the field, particularly in locations of steep gradients, shocks, or discontinuities. Typically, the shape parameter is chosen …


A Coupled Localized Rbf Meshless/Drbem Formulation For Accurate Modeling Of Incompressible Fluid Flows, Leonardo Bueno, Eduardo Divo, Alain J. Kassab Apr 2017

A Coupled Localized Rbf Meshless/Drbem Formulation For Accurate Modeling Of Incompressible Fluid Flows, Leonardo Bueno, Eduardo Divo, Alain J. Kassab

Publications

Velocity-pressure coupling schemes for the solution of incompressible fluid flow problems in Computational Fluid Dynamics (CFD) rely on the formulation of Poisson-like equations through projection methods. The solution of these Poisson-like equations represent the pressure correction and the velocity correction to ensure proper satisfaction of the conservation of mass equation at each step of a time-marching scheme or at each level of an iteration process. Inaccurate solutions of these Poisson-like equations result in meaningless instantaneous or intermediate approximations that do not represent the proper time-accurate behavior of the flow. The fact that these equations must be solved to convergence at …


Application Of An Rbf Blending Interpolation Method To Problems With Shocks, Michael Harris, Eduardo Divo, Alain J. Kassab Jan 2017

Application Of An Rbf Blending Interpolation Method To Problems With Shocks, Michael Harris, Eduardo Divo, Alain J. Kassab

Publications

Radial basis functions (RBF) have become an area of research in recent years, especially in the use of solving partial differential equations (PDE). Radial basis functions have an impressive capability in interpolating scattered data, even for data with discontinuities. Although, for infinitely smooth radial basis functions such as the multi-quadrics and inverse multi-quadrics, the shape parameter must be chosen properly to obtain accurate approximations while avoiding ill-conditioning of the interpolating matrices. The optimum shape parameter can vary depending on the field, such as in locations of sharp gradients or shocks. Typically, the shape parameter is chosen to maintain a high …


Numerical Simulation Of Acoustic Emission During Crack Growth In 3-Point Bending Test, Mihhail Berezovski, Arkadi Berezovski Jan 2017

Numerical Simulation Of Acoustic Emission During Crack Growth In 3-Point Bending Test, Mihhail Berezovski, Arkadi Berezovski

Publications

Numerical simulation of acoustic emission by crack propagation in 3-point bending tests is performed to investigate how the interaction of elastic waves generates a detectable signal. It is shown that the use of a kinetic relation for the crack tip velocity combined with a simple crack growth criterion provides the formation of waveforms similar to those observed in experiments.


Multi-Scale Cardiovascular Flow Analysis By An Integrated Meshless-Lumped Parameter Model, Leonardo A. Bueno, Eduardo A. Divo, Alain J. Kassab Jan 2017

Multi-Scale Cardiovascular Flow Analysis By An Integrated Meshless-Lumped Parameter Model, Leonardo A. Bueno, Eduardo A. Divo, Alain J. Kassab

Publications

A computational tool that integrates a Radial basis function (RBF)-based Meshless solver with a Lumped Parameter model (LPM) is developed to analyze the multi-scale and multi-physics interaction between the cardiovascular flow hemodynamics, the cardiac function, and the peripheral circulation. The Meshless solver is based on localized RBF collocations at scattered data points which allows for automation of the model generation via CAD integration. The time-accurate incompressible flow hemodynamics are addressed via a pressure-velocity correction scheme where the ensuing Poisson equations are accurately and efficiently solved at each time step by a Dual-Reciprocity Boundary Element method (DRBEM) formulation that takes advantage …


Ermakov Equation And Camassa-Holm Waves, Haret C. Rosu, S.C. Mancas Sep 2016

Ermakov Equation And Camassa-Holm Waves, Haret C. Rosu, S.C. Mancas

Publications

From the works of authors of this article, it is known that the solution of the Ermakov equation is an important ingredient in the spectral problem of the Camassa-Holm equation. Here, we review this interesting issue and consider in addition more features of the Ermakov equation which have an impact on the behavior of the shallow water waves as described by the Camassa-Holm equation.


Thermoelastic Waves In Microstructured Solids, Arkadi Berezovski, Mihhail Berezovski Feb 2016

Thermoelastic Waves In Microstructured Solids, Arkadi Berezovski, Mihhail Berezovski

Publications

Thermoelastic wave propagation suggests a coupling between elastic deformation and heat conduction in a body. Microstructure of the body influences the both processes. Since energy is conserved in elastic deformation and heat conduction is always dissipative, the generalization of classical elasticity theory and classical heat conduction is performed differently. It is shown in the paper that a hyperbolic evolution equation for microtemperature can be obtained in the framework of the dual internal variables approach keeping the parabolic equation for the macrotemperature. The microtemperature is considered as a macrotemperature fluctuation. Numerical simulations demonstrate the formation and propagation of thermoelastic waves in …


Signal Flow Graph Approach To Efficient Dst I-Iv Algorithms, Sirani M. Perera Jan 2016

Signal Flow Graph Approach To Efficient Dst I-Iv Algorithms, Sirani M. Perera

Publications

In this paper, fast and efficient discrete sine transformation (DST) algorithms are presented based on the factorization of sparse, scaled orthogonal, rotation, rotation-reflection, and butterfly matrices. These algorithms are completely recursive and solely based on DST I-IV. The presented algorithms have low arithmetic cost compared to the known fast DST algorithms. Furthermore, the language of signal flow graph representation of digital structures is used to describe these efficient and recursive DST algorithms having (n�1) points signal flow graph for DST-I and n points signal flow graphs for DST II-IV.


An Economic Regression Model To Predict Market Movements, Timothy A. Smith, Andrew Hawkins Dec 2015

An Economic Regression Model To Predict Market Movements, Timothy A. Smith, Andrew Hawkins

Publications

In finance, multiple linear regression models are frequently used to determine the value of an asset based on its underlying traits. We built a regression model to predict the value of the S&P 500 based on economic indicators of gross domestic product, money supply, produce price and consumer price indices. Correlation between the error in this regression model and the S&P’s volatility index (VIX) provides an efficient way to predict when large changes in the price of the S&P 500 may occur. As the true value of the S&P 500 deviates from the predicted value, obtained by the regression model, …