Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Plant Sciences

Dartmouth College

Plant

Articles 1 - 13 of 13

Full-Text Articles in Entire DC Network

Dynamic Patterns Of Expression For Genes Regulating Cytokinin Metabolism And Signaling During Rice Inflorescence Development, Maria V. Yamburenko, Joseph J. Kieber, G. Eric Schaller Apr 2017

Dynamic Patterns Of Expression For Genes Regulating Cytokinin Metabolism And Signaling During Rice Inflorescence Development, Maria V. Yamburenko, Joseph J. Kieber, G. Eric Schaller

Dartmouth Scholarship

Inflorescence development in cereals, including such important crops as rice, maize, and wheat, directly affects grain number and size and is a key determinant of yield. Cytokinin regulates meristem size and activity and, as a result, has profound effects on inflorescence development and architecture. To clarify the role of cytokinin action in inflorescence development, we used the NanoString nCounter system to analyze gene expression in the early stages of rice panicle development, focusing on 67 genes involved in cytokinin biosynthesis, degradation, and signaling. Results point toward key members of these gene families involved in panicle development and indicate that the …


Bypassing Iron Storage In Endodermal Vacuoles Rescues The Iron Mobilization Defect In The Natural Resistance Associated-Macrophage Protein3natural Resistance Associated-Macrophage Protein4 Double Mutant, Viviane Mary, Magali Schnell Ramos, Cynthia Gillet, Amanda L. Socha, Jerome Giraudat, Astrid Agorio, Sylvain Merlot, Colin Clairet, Sun A. Kim, Tracy Punshon, Mary Lou Guerinot, Sebastien Thomine Sep 2015

Bypassing Iron Storage In Endodermal Vacuoles Rescues The Iron Mobilization Defect In The Natural Resistance Associated-Macrophage Protein3natural Resistance Associated-Macrophage Protein4 Double Mutant, Viviane Mary, Magali Schnell Ramos, Cynthia Gillet, Amanda L. Socha, Jerome Giraudat, Astrid Agorio, Sylvain Merlot, Colin Clairet, Sun A. Kim, Tracy Punshon, Mary Lou Guerinot, Sebastien Thomine

Dartmouth Scholarship

To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination. When germinated under Fe-deficient conditions, development of the nramp3nramp4 double mutant is arrested as a consequence of impaired Fe mobilization. To identify novel genes involved in seed Fe homeostasis, we screened an …


Allelic Polymorphism Of Gigantea Is Responsible For Naturally Occurring Variation In Circadian Period In Brassica Rapa, Qiguang Xie, Ping Lou, Victor Hermand, Rashid Aman Mar 2015

Allelic Polymorphism Of Gigantea Is Responsible For Naturally Occurring Variation In Circadian Period In Brassica Rapa, Qiguang Xie, Ping Lou, Victor Hermand, Rashid Aman

Dartmouth Scholarship

GIGANTEA (GI) was originally identified by a late-flowering mutant in Arabidopsis, but subsequently has been shown to act in circadian period determination, light inhibition of hypocotyl elongation, and responses to multiple abiotic stresses, including tolerance to high salt and cold (freezing) temperature. Genetic mapping and analysis of families of heterogeneous inbred lines showed that natural variation in GI is responsible for a major quantitative trait locus in circadian period in Brassica rapa. We confirmed this conclusion by transgenic rescue of an Arabidopsis gi-201 loss of function mutant. The two B. rapa GI alleles each fully rescued the …


Myb10 And Myb72 Are Required For Growth Under Iron-Limiting Conditions, Christine M. Palmer, Maria N. Hindt, Holger Schmidt, Stephan Clemens, Mary Lou Guerinot Nov 2013

Myb10 And Myb72 Are Required For Growth Under Iron-Limiting Conditions, Christine M. Palmer, Maria N. Hindt, Holger Schmidt, Stephan Clemens, Mary Lou Guerinot

Dartmouth Scholarship

Iron is essential for photosynthesis and is often a limiting nutrient for plant productivity. Plants respond to conditions of iron deficiency by increasing transcript abundance of key genes involved in iron homeostasis, but only a few regulators of these genes have been identified. Using genome-wide expression analysis, we searched for transcription factors that are induced within 24 hours after transferring plants to iron-deficient growth conditions. Out of nearly 100 transcription factors shown to be up-regulated, we identified MYB10 and MYB72 as the most highly induced transcription factors. Here, we show that MYB10 and MYB72 are functionally redundant and are required …


Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert Sep 2012

Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert

Dartmouth Scholarship

Iron deficiency induces a complex set of responses in plants, including developmental and physiological changes, to increase iron uptake from soil. In Arabidopsis, many transporters involved in the absorption and distribution of iron have been identified over the past decade. However, little is known about the signaling pathways and networks driving the various responses to low iron. Only the basic helix–loop–helix (bHLH) transcription factor FIT has been shown to control the expression of the root iron uptake machinery genes FRO2 and IRT1. Here, we characterize the biological role of two other iron-regulated transcription factors, bHLH100 and bHLH101, in iron homeostasis. …


Plant Calcium Content: Ready To Remodel, Jian Yang, Tracy Punshon, Mary Lou Guerinot, Kendal D. Hirschi Aug 2012

Plant Calcium Content: Ready To Remodel, Jian Yang, Tracy Punshon, Mary Lou Guerinot, Kendal D. Hirschi

Dartmouth Scholarship

By identifying the relationship between calcium location in the plant cell and nutrient bioavailability, the plant characteristics leading to maximal calcium absorption by humans can be identified. Knowledge of plant cellular and molecular targets controlling calcium location in plants is emerging. These insights should allow for better strategies for increasing the nutritional content of foods. In particular, the use of preparation-free elemental imaging technologies such as synchrotron X-ray fluorescence (SXRF) microscopy in plant biology may allow researchers to understand the relationship between subcellular location and nutrient bioavailability. These approaches may lead to better strategies for altering the location of calcium …


Mir319a Targeting Of Tcp4 Is Critical For Petal Growth And Development In Arabidopsis, Anwesha Nag, Stacey King, Thomas Jack Dec 2009

Mir319a Targeting Of Tcp4 Is Critical For Petal Growth And Development In Arabidopsis, Anwesha Nag, Stacey King, Thomas Jack

Dartmouth Scholarship

In a genetic screen in a drnl-2 background, we isolated a loss-of-function allele in miR319a (miR319a129). Previously, miR319a has been postulated to play a role in leaf development based on the dramatic curled-leaf phenotype of plants that ectopically express miR319a (jaw-D). miR319a129 mutants exhibit defects in petal and stamen development; petals are narrow and short, and stamens exhibit defects in anther development. The miR319a129 loss-of-function allele contains a single-base change in the middle of the encoded miRNA, which reduces the ability of miR319a to recognize targets. Analysis of the expression patterns of the …


Disruption Of Osysl15 Leads To Iron Inefficiency In Rice Plants, Sichul Lee, Jeff C. Chiecko, Sun A. Kim, Elsbeth L. Walker, Youngsook Lee, Mary Lou Guerinot, Gyhheung An Jun 2009

Disruption Of Osysl15 Leads To Iron Inefficiency In Rice Plants, Sichul Lee, Jeff C. Chiecko, Sun A. Kim, Elsbeth L. Walker, Youngsook Lee, Mary Lou Guerinot, Gyhheung An

Dartmouth Scholarship

Uptake and translocation of metal nutrients are essential processes for plant growth. Graminaceous species release phytosiderophores that bind to Fe3+; these complexes are then transported across the plasma membrane. We have characterized OsYSL15, one of the rice (Oryza sativa) YS1-like (YSL) genes that are strongly induced by iron (Fe) deficiency. The OsYSL15 promoter fusion to β-glucuronidase showed that it was expressed in all root tissues when Fe was limited. In low-Fe leaves, the promoter became active in all tissues except epidermal cells. This activity was also detected in flowers and seeds. The OsYSL15:green …


Chloroplast Fe(Iii) Chelate Reductase Activity Is Essential For Seedling Viability Under Iron Limiting Conditions, Jeeyon Jeong, Christopher Cohu, Loubna Kerkeb, Marinus Pilon, Erin L. Connolly, Mary Lou Guerinot Jul 2008

Chloroplast Fe(Iii) Chelate Reductase Activity Is Essential For Seedling Viability Under Iron Limiting Conditions, Jeeyon Jeong, Christopher Cohu, Loubna Kerkeb, Marinus Pilon, Erin L. Connolly, Mary Lou Guerinot

Dartmouth Scholarship

Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloroplast. Chloroplasts prepared from fro7 loss-of-function mutants have 75% less Fe(III) chelate reductase activity and contain 33% less iron per microgram of chlorophyll than …


Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi Mar 2008

Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi

Dartmouth Scholarship

Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of …


A Subset Of Arabidopsis Ap2 Transcription Factors Mediates Cytokinin Responses In Concert With A Two-Component Pathway, Aaron M. Rashotte, Michael G. Mason, Claire E. Hutchison, Fernando J. Ferreira, G. Eric Schaller, Joseph J. Kieber Jul 2006

A Subset Of Arabidopsis Ap2 Transcription Factors Mediates Cytokinin Responses In Concert With A Two-Component Pathway, Aaron M. Rashotte, Michael G. Mason, Claire E. Hutchison, Fernando J. Ferreira, G. Eric Schaller, Joseph J. Kieber

Dartmouth Scholarship

The plant hormone cytokinin regulates numerous growth and developmental processes. A signal transduction pathway for cytokinin has been elucidated that is similar to bacterial two-component phosphorelays. In Arabidopsis, this pathway is comprised of receptors that are similar to sensor histidine kinases, histidine-containing phosphotransfer proteins, and response regulators (ARRs). There are two classes of response regulators, the type-A ARRs, which act as negative regulators of cytokinin responses, and the type-B ARRs, which are transcription factors that play a positive role in mediating cytokinin-regulated gene expression. Here we show that several closely related members of the Arabidopsis AP2 gene family of …


Ecological Costs And Benefits Of Defenses In Nectar, Lynn S. Adler, Rebecca E. Irwin Nov 2005

Ecological Costs And Benefits Of Defenses In Nectar, Lynn S. Adler, Rebecca E. Irwin

Dartmouth Scholarship

The nectar of many plant species contains defensive compounds that have been hypothesized to benefit plants through a variety of mechanisms. However, the relationship between nectar defenses and plant fitness has not been established for any species. We experimentally manipulated gelsemine, the principal alkaloid of Carolina jessamine (Gelsemium sempervirens), in nectar to determine its effect on pollinator visitation, nectar robber visitation, and male and female plant reproduction. We found that nectar robbers and most pollinators probed fewer flowers and spent less time per flower on plants with high compared to low nectar alkaloids. High alkaloids decreased the donation of fluorescent …


A Novel Iron-Regulated Metal Transporter From Plants Identified By Functional Expression In Yeast., David Eide, Margaret Broderius, Jeanette Fett, Mary Lou Guerinot May 1996

A Novel Iron-Regulated Metal Transporter From Plants Identified By Functional Expression In Yeast., David Eide, Margaret Broderius, Jeanette Fett, Mary Lou Guerinot

Dartmouth Scholarship

Iron is an essential nutrient for virtually all organisms. The IRT1 (iron-regulated transporter) gene of the plant Arabidopsis thaliana, encoding a probable Fe(II) transporter, was cloned by functional expression in a yeast strain defective for iron uptake. Yeast expressing IRT1 possess a novel Fe(II) uptake activity that is strongly inhibited by Cd. IRT1 is predicted to be an integral membrane protein with a metal-binding domain. Data base comparisons and Southern blot analysis indicated that IRT1 is a member of a gene family in Arabidopsis. Related sequences were also found in the genomes of rice, yeast, nematodes, and humans. In Arabidopsis, …