Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Characterization Of The Cytokinin-Responsive Transcriptome In Rice, Tracy Raines, Ivory C. Blakley, Yu-Chang Tsai, Jennifer M. Worthen, José M. Franco-Zorrilla, Roberto Solano, G. Eric Schaller Dec 2016

Characterization Of The Cytokinin-Responsive Transcriptome In Rice, Tracy Raines, Ivory C. Blakley, Yu-Chang Tsai, Jennifer M. Worthen, José M. Franco-Zorrilla, Roberto Solano, G. Eric Schaller

Dartmouth Scholarship

Cytokinin activates transcriptional cascades important for development and the responses to biotic and abiotic stresses. Most of what is known regarding cytokinin-regulated gene expression comes from studies of the dicotyledonous plant Arabidopsis thaliana. To expand the understanding of the cytokinin-regulated transcriptome, we employed RNA-Seq to analyze gene expression in response to cytokinin in roots and shoots of the monocotyledonous plant rice.


The Importance Of Ambient Temperature To Growth And The Induction Of Flowering, C. R. Mcclung, Ping Lou, Victor Hermand, Jin A. Kim Aug 2016

The Importance Of Ambient Temperature To Growth And The Induction Of Flowering, C. R. Mcclung, Ping Lou, Victor Hermand, Jin A. Kim

Dartmouth Scholarship

Plant development is exquisitely sensitive to the environment. Light quantity, quality, and duration (photoperiod) have profound effects on vegetative morphology and flowering time. Recent studies have demonstrated that ambient temperature is a similarly potent stimulus influencing morphology and flowering. In Arabidopsis, ambient temperatures that are high, but not so high as to induce a heat stress response, confer morphological changes that resemble the shade avoidance syndrome. Similarly, these high but not stressful temperatures can accelerate flowering under short day conditions as effectively as exposure to long days. Photoperiodic flowering entails a series of external coincidences, in which environmental cycles of …


Belowground Rhizomes In Paleosols: The Hidden Half Of An Early Devonian Vascular Plant, Jinzhuang Xue, Zhenzhen Deng, Pu Huang, Kangjun Huang, Michael J. Benton, Ying Cui Aug 2016

Belowground Rhizomes In Paleosols: The Hidden Half Of An Early Devonian Vascular Plant, Jinzhuang Xue, Zhenzhen Deng, Pu Huang, Kangjun Huang, Michael J. Benton, Ying Cui

Dartmouth Scholarship

The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant−soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus. The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils …


A Heavy Metal P-Type Atpase Oshma4 Prevents Copper Accumulation In Rice Grain, Xin-Yuan Huang, Fenglin Deng, Naoki Yamaji, Shannon R.M. Pinson, Miho Fujii-Kashino, John Danku, Alex Douglas, Mary Lou Guerinot, David Salt, Jian Feng Ma Jul 2016

A Heavy Metal P-Type Atpase Oshma4 Prevents Copper Accumulation In Rice Grain, Xin-Yuan Huang, Fenglin Deng, Naoki Yamaji, Shannon R.M. Pinson, Miho Fujii-Kashino, John Danku, Alex Douglas, Mary Lou Guerinot, David Salt, Jian Feng Ma

Dartmouth Scholarship

Rice is a major source of calories and mineral nutrients for over half the world's human population. However, little is known in rice about the genetic basis of variation in accumulation of copper (Cu), an essential but potentially toxic nutrient. Here we identify OsHMA4 as the likely causal gene of a quantitative trait locus controlling Cu accumulation in rice grain. We provide evidence that OsHMA4 functions to sequester Cu into root vacuoles, limiting Cu accumulation in the grain. The difference in grain Cu accumulation is most likely attributed to a single amino acid substitution that leads to different OsHMA4 transport …


Biological Lignocellulose Solubilization: Comparative Evaluation Of Biocatalysts And Enhancement Via Cotreatment, Julie M. D. Paye, Anna Guseva, Sarah K. Hammer, Erica Gjersing Jan 2016

Biological Lignocellulose Solubilization: Comparative Evaluation Of Biocatalysts And Enhancement Via Cotreatment, Julie M. D. Paye, Anna Guseva, Sarah K. Hammer, Erica Gjersing

Dartmouth Scholarship

Feedstock recalcitrance is the most important barrier impeding cost-effective production of cellulosic biofuels. Pioneer commercial cellulosic ethanol facilities employ thermochemical pretreatment and addition of fungal cellulase, reflecting the main research emphasis in the field. However, it has been suggested that it may be possible to process cellulosic biomass without thermochemical pretreatment using thermophilic, cellulolytic bacteria. To further explore this idea, we examine the ability of various biocatalysts to solubilize autoclaved but otherwise unpretreated cellulosic biomass under controlled but not industrial conditions.


Cytokinin Acts Through The Auxin Influx Carrier Aux1 To Regulate Cell Elongation In The Root, Ian H. Street, Dennis Matthews, Maria Yamburkenko, Ali Sorooshzadeh Jan 2016

Cytokinin Acts Through The Auxin Influx Carrier Aux1 To Regulate Cell Elongation In The Root, Ian H. Street, Dennis Matthews, Maria Yamburkenko, Ali Sorooshzadeh

Dartmouth Scholarship

Hormonal interactions are crucial for plant development. In Arabidopsis, cytokinins inhibit root growth through effects on cell proliferation and cell elongation. Here, we define key mechanistic elements in a regulatory network by which cytokinin inhibits root cell elongation in concert with the hormones auxin and ethylene. The auxin importer AUX1 functions as a positive regulator of cytokinin responses in the root; mutation of AUX1 specifically affects the ability of cytokinin to inhibit cell elongation but not cell proliferation. AUX1 is required for cytokinin-dependent changes of auxin activity in the lateral root cap associated with the control of cell elongation. Cytokinin …