Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses and Dissertations--Biology

Theses/Dissertations

2016

Development

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Characterization Of Somatically-Eliminated Genes During Development Of The Sea Lamprey (Petromyzon Marinus), Stephanie A. Bryant Jan 2016

Characterization Of Somatically-Eliminated Genes During Development Of The Sea Lamprey (Petromyzon Marinus), Stephanie A. Bryant

Theses and Dissertations--Biology

The sea lamprey (Petromyzon marinus) undergoes programmed genome rearrangements (PGRs) during early development that facilitate the elimination of ~20% of the genome from the somatic cell lineage, resulting in distinct somatic and germline genomes. To improve our understanding of the evolutionary/developmental logic of PGR, we generated computational predictions to identify candidate germline-specific genes within a transcriptomic dataset derived from adult germline and the embryonic stages encompassing PGR. Validation studies identified 44 germline-specific genes and characterized patterns of transcription and DNA loss during early embryogenesis. Expression analyses reveal that several of these genes are differentially expressed during early embryogenesis …


Role Of Hairy-Related (Her) Genes During Vertebrate Retinal Development And Regeneration, Stephen G. Wilson Jan 2016

Role Of Hairy-Related (Her) Genes During Vertebrate Retinal Development And Regeneration, Stephen G. Wilson

Theses and Dissertations--Biology

Development and regeneration of the vertebrate eye are the result of complex interactions of regulatory networks and spatiotemporally controlled gene expression events. During embryonic retinal development, the coordination of cell signaling and transcriptional regulation allows for a relatively homogenous sheet of neuroepithelial cells to proliferate and differentiate in-to a multilayered, light sensitive retinal tissue. Following injury, the retinas of many cold-blooded vertebrates, such as the zebrafish, undergo a proliferative response that results not only in new retinal cells of the correct type in the correct location, but also functional integration of these cells and restoration of vision. In order for …