Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Microfabrication Processes And Advancements In Planar Electrode Ion Traps As Mass Spectrometers, Brett Jacob Hansen Mar 2013

Microfabrication Processes And Advancements In Planar Electrode Ion Traps As Mass Spectrometers, Brett Jacob Hansen

Theses and Dissertations

This dissertation presents advances in the development of planar electrode ion traps. An ion trap is a device that can be used in mass analysis applications. Electrode surfaces create an electric field profile that trap ionized molecules of an analyte. The electric fields can then be manipulated to mass-selectively eject ions out of the trap into a detector. The resulting data can be used to analyze molecular structure and composition of an unknown compound. Conventional ion traps require machined electrode surfaces to form the electric trapping field. This class of electrode presents significant obstacles when attempting to miniaturize ion traps ...


Toward Sophisticated Controls Of Two-Phase Transport At Micro/Nano-Scale, Fanghao Yang Jan 2013

Toward Sophisticated Controls Of Two-Phase Transport At Micro/Nano-Scale, Fanghao Yang

Theses and Dissertations

Through the use of latent heat evaporating, flow boiling in microchannels offers new opportunities to enable high efficient heat and mass transport for a wide range of emerging applications such as high power electric/electronic/optical cooling, compact heat exchangers and reactors. However, flow boiling in microchannels is hampered by several severe constraints such as bubble confinement (e.g., slug flow), viscosity and surface tension force-dominated flows, which result in unpredictable flow pattern transitions and tend to induce severe flow boiling instabilities (i.e. low-frequency and large magnitude flows) and suppress evaporation and convection.

In this dissertation, three novel micro ...