Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses and Dissertations

2018

Aerospace Engineering

Creep

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 1100°C In Air And In Silicic Acid-Saturated Steam, Logan M. Gumucio Jun 2018

Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 1100°C In Air And In Silicic Acid-Saturated Steam, Logan M. Gumucio

Theses and Dissertations

Innovations in SiC based ceramic matrix composites (CMCs) have yielded exceptional high-temperature properties and performance in aggressive oxidizing environments. These material characteristics provide potential avenues for future advancements in many applications where current metallic alloys perform near their operating temperature limits in a harsh environment. As steam (typically present in these environments) enters through cracks in the matrix of a SiC/SiC composite, it leaches Si and becomes saturated with silicic acid, Si(OH)4, prior to attacking the reinforcing SiC fibers. Therefore, it is paramount that a thorough understanding of the performance and durability of SiC fibers be obtained under …


Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 1000°C In Air And In Silicic Acid-Saturated Steam, Brian G. Kroeger Mar 2018

Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 1000°C In Air And In Silicic Acid-Saturated Steam, Brian G. Kroeger

Theses and Dissertations

Advanced SiC/SiC ceramic matrix composites (CMCs) are being considered for a variety of applications. Of interest is their ability to withstand exposure to high temperature in an aggressive oxidizing environment. The presence of steam creates such an environment. As steam traverses across a SiC/SiC composite and through cracks in the SiC matrix, it becomes saturated with silicic acid, Si(OH)4. It is essential to understand the long-term impacts and durability of SiC/SiC CMCs that have been exposed to such a demanding environment. The present research investigated creep of Hi-Nicalon™ S SiC fibers at 1000°C in air and in silicic …