Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Assessment Of Nitinol-Based Arch Wedge Support Through Finite Element Analysis, Tyler Nicholas Stranburg Dec 2017

Assessment Of Nitinol-Based Arch Wedge Support Through Finite Element Analysis, Tyler Nicholas Stranburg

Theses and Dissertations

This study proposes a nitinol-based thin-walled arch wedge support (AWS) and validated its performance in shock absorbing by using finite element analysis (FEA) method. Five human movements, two boundary conditions, and three thicknesses were implemented in FEA models to systematically reveal how those parameters and factors affect the response of the AWS. Due to the lack of data, the FEA models were meshed with elements of different sizes and used for simulations until the results converged. The simulation results showed that the thin-walled nitinol AWS with the selected thicknesses can withstand different human movements under both boundary conditions. In another …


Design Configurations And Operating Limitations Of An Oscillating Heat Pipe, Omar Talal Ibrahim Aug 2017

Design Configurations And Operating Limitations Of An Oscillating Heat Pipe, Omar Talal Ibrahim

Theses and Dissertations

Passive and compact heat dissipation systems are and will remain vital for the successful operation of modern electronic systems. Oscillating heat pipes (OHPs) have been a part of this research area since their inception due to their ability to passively manage high heat fluxes. In the current investigation, different designs of tubular, flat plate, and multiple layer oscillating heat pipes are studied by using different operating parameters to investigate the operating limitations of each design. Furthermore, selective laser melting was demonstrated as a new OHP manufacturing technique and was used to create a compact multiple layer flat plate OHP. A …


Crack Healing In 304l Stainless Steel Using Additive Manufacturing And Friction Stir Processing (Fsp), Cameron Scott Gygi Aug 2017

Crack Healing In 304l Stainless Steel Using Additive Manufacturing And Friction Stir Processing (Fsp), Cameron Scott Gygi

Theses and Dissertations

Continuing an investigation on using FSP to heal stress corrosion cracks (SCC) in welds on nuclear reactors, this study seeks to use AM in addition to FSP to aid crack repair. Previous studies address that current repair technology on nuclear reactors involves the use of TIG welding which can allow helium atoms to aggregate and form voids at the grain boundaries. This weakens the material and renders the repair ineffective. Another previous study evaluated the effectiveness of FSP alone in repairing SCC which did have defects depending on the parameters used during FSP. This study evaluated the use of AM …


Fatigue Behavior And Microstructure Of Direct Laser Deposited Inconel 718 Alloy, Alexander Scott Johnson May 2017

Fatigue Behavior And Microstructure Of Direct Laser Deposited Inconel 718 Alloy, Alexander Scott Johnson

Theses and Dissertations

Inconel 718 is a nickel-based superalloy with a series of superior properties, such as high strength, creep-resistance, and corrosion-resistance. Additive manufacturing (AM) is appealing to Inconel 718 because of its near-net-shape production capability to circumvent poor machinability. However, AM parts are prone to detrimental porosity, reducing their fatigue resistance. Thus, further understanding of AM fatigue behavior is required before widespread industrial use. The microstructural and fatigue properties of heat treated AM Inconel 718, produced using Laser Engineered Net Shaping (LENSTM), are evaluated at room and elevated temperatures. Fully reversed, strain-controlled fatigue tests were performed on cylindrical specimens at strain amplitudes …


Analysis Of Additively Manufactured Lattice Structures Using Finite Element Methods, Christopher A. Box Mar 2017

Analysis Of Additively Manufactured Lattice Structures Using Finite Element Methods, Christopher A. Box

Theses and Dissertations

Additive Manufacturing (AM) processes are well known for their ability to fabricate parts with complex geometries. Lattice structures leverage this ability to create parts with high strength-to-weight ratio and other desirable structural qualities. This research presents a parameterized modeling tool using common Finite Element Analysis (FEA) and scripting software with which aggregated lattice structures can be analyzed, given different geometric properties and loading conditions. A full factorial Design of Experiments is run to explore the effects of various parameters on the strength of lattice structures. Experimental compressive strength results from three FDM-produced PLA lattices are discussed and compared to predictions …