Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Micro-Contacts With 3-D Surfaces Made With Grayscale Lithography, Paul L.J. Michaud Mar 2019

Micro-Contacts With 3-D Surfaces Made With Grayscale Lithography, Paul L.J. Michaud

Theses and Dissertations

MEMS switches show advantages over FET transistors and PIN diodes for switching applications due to low contact resistance, high linearity, low power use, better isolation and lower insertion loss. The switches have not replaced FETs or PIN diodes due to perceived limitations in their reliability and the need for stable contact resistance. In order to create switches acceptable for industry applications, research on micro-contact physics and failure mechanisms of micro-contacts is necessary to develop durable contact surfaces. The aim of this research was to design and fabricate micro-contacts with three-dimensional surfaces using grayscale lithography. The goal was to create devices …


Event-Based Visual-Inertial Odometry On A Fixed-Wing Unmanned Aerial Vehicle, Kaleb J. Nelson Mar 2019

Event-Based Visual-Inertial Odometry On A Fixed-Wing Unmanned Aerial Vehicle, Kaleb J. Nelson

Theses and Dissertations

Event-based cameras are a new type of visual sensor that operate under a unique paradigm. These cameras provide asynchronous data on the log-level changes in light intensity for individual pixels, independent of other pixels' measurements. Through the hardware-level approach to change detection, these cameras can achieve microsecond fidelity, millisecond latency, ultra-wide dynamic range, and all with very low power requirements. The advantages provided by event-based cameras make them excellent candidates for visual odometry (VO) for unmanned aerial vehicle (UAV) navigation. This document presents the research and implementation of an event-based visual inertial odometry (EVIO) pipeline, which estimates a vehicle's 6-degrees-of-freedom …


A Mems Dual Vertical Electrometer And Electric Field-Mill, George C. Underwood Mar 2019

A Mems Dual Vertical Electrometer And Electric Field-Mill, George C. Underwood

Theses and Dissertations

Presented is the first iteration of a Microelectromechanical System (MEMS) dual vertical electrometer and electric field-mill (EFM). The device uses a resonating structure as a variable capacitor that converts the presence of a charge or field into an electric signal. Previous MEMS electrometers are lateral electrometers with laterally spaced electrodes that resonate tangentially with respect to each other. Vertical electrometers, as the name suggests, have vertically spaced electrodes that resonate transversely with respect to each other. The non-tangential movement reduces damping in the system. Both types demonstrate comparable performance, but the vertical electrometer does so at a fraction of the …