Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Entire DC Network

Exploring Convergence Of Snake Skin-Inspired Texture Designs And Additive Manufacturing For Mechanical Traction, Catherine Sue Tiner Dec 2019

Exploring Convergence Of Snake Skin-Inspired Texture Designs And Additive Manufacturing For Mechanical Traction, Catherine Sue Tiner

Theses and Dissertations

This research focuses on the understanding, development, and additive manufacture of a 3D printed snake skin-inspired texture pattern. The design functionalities of snake skin were determined through the study of the snake species Python Regius otherwise known as the ball python. Each scale of a snake has hierarchical texture with hexagonal macro-patterns aligned on the ventral surface of the skin with overriding anisotropic micro textured patterns such as denticulations and fibrils. Using a laser-powder bed fusion (L-PBF) process, 420 stainless steel samples were 3D printed which closely resemble the above described directional texture of natural snake skin. This printed surface ...


A Mems Dual Vertical Electrometer And Electric Field-Mill, George C. Underwood Mar 2019

A Mems Dual Vertical Electrometer And Electric Field-Mill, George C. Underwood

Theses and Dissertations

Presented is the first iteration of a Microelectromechanical System (MEMS) dual vertical electrometer and electric field-mill (EFM). The device uses a resonating structure as a variable capacitor that converts the presence of a charge or field into an electric signal. Previous MEMS electrometers are lateral electrometers with laterally spaced electrodes that resonate tangentially with respect to each other. Vertical electrometers, as the name suggests, have vertically spaced electrodes that resonate transversely with respect to each other. The non-tangential movement reduces damping in the system. Both types demonstrate comparable performance, but the vertical electrometer does so at a fraction of the ...


Micro-Contacts With 3-D Surfaces Made With Grayscale Lithography, Paul L.J. Michaud Mar 2019

Micro-Contacts With 3-D Surfaces Made With Grayscale Lithography, Paul L.J. Michaud

Theses and Dissertations

MEMS switches show advantages over FET transistors and PIN diodes for switching applications due to low contact resistance, high linearity, low power use, better isolation and lower insertion loss. The switches have not replaced FETs or PIN diodes due to perceived limitations in their reliability and the need for stable contact resistance. In order to create switches acceptable for industry applications, research on micro-contact physics and failure mechanisms of micro-contacts is necessary to develop durable contact surfaces. The aim of this research was to design and fabricate micro-contacts with three-dimensional surfaces using grayscale lithography. The goal was to create devices ...


Event-Based Visual-Inertial Odometry On A Fixed-Wing Unmanned Aerial Vehicle, Kaleb J. Nelson Mar 2019

Event-Based Visual-Inertial Odometry On A Fixed-Wing Unmanned Aerial Vehicle, Kaleb J. Nelson

Theses and Dissertations

Event-based cameras are a new type of visual sensor that operate under a unique paradigm. These cameras provide asynchronous data on the log-level changes in light intensity for individual pixels, independent of other pixels' measurements. Through the hardware-level approach to change detection, these cameras can achieve microsecond fidelity, millisecond latency, ultra-wide dynamic range, and all with very low power requirements. The advantages provided by event-based cameras make them excellent candidates for visual odometry (VO) for unmanned aerial vehicle (UAV) navigation. This document presents the research and implementation of an event-based visual inertial odometry (EVIO) pipeline, which estimates a vehicle's ...


Interfacial Tailoring Of Lithium-Ion Batteries By Atomic/Molecular Layer Deposition, Qian Sun Dec 2018

Interfacial Tailoring Of Lithium-Ion Batteries By Atomic/Molecular Layer Deposition, Qian Sun

Theses and Dissertations

Lithium-ion batteries (LIBs) are promising energy storage devices, which play significant roles in addressing problems related to fossil fuels depletion and environmental pollution. Since the 1990s, LIBs have attracted great attention for many applications. Nowadays, LIBs are dominating portable electronics, having several advantages over their forerunners, such as high voltage (3.3~4.2 V) [1,2], low self-discharge (< 5~10 %/month) [3,4], wide operation temperature (-20~60 °C) [5,6], and fast charge/discharge rate [7,8]. However, LIBs deliver an energy density of 100-220 Wh/kg in practice to date, which is far from their theoretical ones, thus hindering their further applications in electric vehicles. Additionally, LIBs have been plagued by other problems, such as intolerance to overcharge/overdischarge, low heat resistance, lithium dendrites growth, large volume change of the silicon anode, large polarization and even safety problems.

Atomic layer deposition (ALD) and molecular layer deposition (MLD) are two important techniques, both proceeding in self-limiting gas-solid reactions and exhibiting excellent capabilities for ultra-thin films, conformal coatings, and controllable growth. They can be employed to address the problems of LIBs ...


Comparative Study Of Power Semiconductor Devices In A Multilevel Cascaded H-Bridge Inverter, Kenneth Mordi Dec 2018

Comparative Study Of Power Semiconductor Devices In A Multilevel Cascaded H-Bridge Inverter, Kenneth Mordi

Theses and Dissertations

This thesis compares the performance of a nine-level transformerless cascaded H-bridge (CHB) inverter with integrated battery energy storage system (BESS) using SiC power MOSFETs and Si IGBTs. Two crucial performance drivers for inverter applications are power loss and efficiency. Both of these are investigated in this thesis. Power devices with similar voltage and current ratings are used in the same inverter topology, and the performance of each device is analyzed with respect to switching frequency and operating temperature. The loss measurements and characteristics within the inverter are discussed. The Saber® simulation software was used for the comparisons. The power MOSFET ...


Microheater Array Powder Sintering (Maps) For Printing Flexible Electronics, Nicholas Holt May 2018

Microheater Array Powder Sintering (Maps) For Printing Flexible Electronics, Nicholas Holt

Theses and Dissertations

Microheater array powder sintering (MAPS) is a novel additive manufacturing process that uses an array of microheaters to selectively sinter powder particles. MAPS shows great promise as a new method of printing flexible electronics by enabling digital curing of conductive inks on a variety of substrates. MAPS operation relies on establishing a precision air gap of a few microns between an array of microheaters, which can reach temperatures of 600°C, and a layer of conductive ink which can be deposited onto a flexible substrate. This system presents challenges, being: the fabrication of a microheater that can reach suitable temperatures ...


Fluid Phase Separation Via Nanochannel Array, John Lee May 2018

Fluid Phase Separation Via Nanochannel Array, John Lee

Theses and Dissertations

Microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) generate ideas and techniques for creating new devices at the micro/nano scale. This dissertation study designed a gas generator system utilizing nanochannels for phase separation that is useful for micro-pneumatic actuators, micro-valves, and micro-pumps. The new gas generator has the potential to be an integral part of a propulsion system for small-scale satellites. Nano/picosatellites have limited orientation capability partly due to the current limitations of microthruster devices. Development of a self-contained micro propulsion system enables dynamic orbital maneuvering of pico- and nano-class satellites.

Additionally, the new gas generator utilizes a high ...


Power Maximization For Pyroelectric, Piezoelectric, And Hybrid Energy Harvesting, Murtadha A. Shaheen Jan 2016

Power Maximization For Pyroelectric, Piezoelectric, And Hybrid Energy Harvesting, Murtadha A. Shaheen

Theses and Dissertations

The goal of this dissertation consists of improving the efficiency of energy harvesting using pyroelectric and piezoelectric materials in a system by the proper characterization of electrical parameters, widening frequency, and coupling of both effects with the appropriate parameters.

A new simple stand-alone method of characterizing the impedance of a pyroelectric cell has been demonstrated. This method utilizes a Pyroelectric single pole low pass filter technique, PSLPF. Utilizing the properties of a PSLPF, where a known input voltage is applied and capacitance Cp and resistance Rp can be calculated at a frequency of 1 mHz to 1 Hz ...


Modeling Radiation Heat Transfer For Building’S Cooling And Heating Loads: Considering The Role Of Clear, Cloudy, And Dusty Conditions In Hot And Dry Climates, Salem Ahmed Algarni Jul 2015

Modeling Radiation Heat Transfer For Building’S Cooling And Heating Loads: Considering The Role Of Clear, Cloudy, And Dusty Conditions In Hot And Dry Climates, Salem Ahmed Algarni

Theses and Dissertations

The influence of transient factors such as sky long wave radiation exchange and atmospheric aerosols (i.e., smog, and dust – made up of sand, clay, and silt) are not carefully considered in current building design and simulation models. Therefore, the research objective was to better understand and account for such variables, resulting in improved radiative predictive capabilities, especially important for hot and dry climates under different sky conditions including clean, cloudy, and dusty. Overall, results of this dissertation provided a better prediction method for sky long wave radiation exchange with a building’s roof and the impact of dust accumulation ...


Swelling-Etching Characterization Of Copper (I) Oxide - Pdms For The Development Of Micro/Nano - Particles Composite Mems Corrosion Sensor, Abdoul Kader Maiga Jul 2015

Swelling-Etching Characterization Of Copper (I) Oxide - Pdms For The Development Of Micro/Nano - Particles Composite Mems Corrosion Sensor, Abdoul Kader Maiga

Theses and Dissertations

The primary objective for this thesis is to contribute to the understanding of the oxide removal process for a corrosion sensing device. The goal for designing such a device is for monitoring corrosion on metallic structures. The sensing material (6.35mm x 1mm discs) of the device is composed of copper (I) oxide particles mixed in some polydimethylsiloxane (PDMS). The PDMS, “housing,” is meant for controlling the oxidation rate through the sensing material. A solvent was used to facilitate the etchant diffusion through the PDMS matrix. Toluene and acetic acid were the ideal solvent and etchant, respectively, for carrying out ...


Crack Growth Behavior Under Creep-Fatigue Conditions Using Compact And Double Edge Notch Tension-Compression Specimens, Santosh B. Narasimha Chary Dec 2013

Crack Growth Behavior Under Creep-Fatigue Conditions Using Compact And Double Edge Notch Tension-Compression Specimens, Santosh B. Narasimha Chary

Theses and Dissertations

The American Society for Testing and Materials (ASTM) has recently developed a new standard for creep-fatigue crack growth testing, E 2760-10, that supports testing compact specimens, C(T), under load controlled conditions. C(T) specimens are commonly used for fatigue and creep-fatigue crack growth testing under constant-load-amplitude conditions. The use of these specimens is limited to positive load ratios. They are also limited in the amount of crack growth data that can be developed at high stress intensity values due to accumulation of plastic and/or creep strains leading to ratcheting in the specimen. Testing under displacement control can potentially ...


Development Of A Pdms Based Micro Total Analysis System For Rapid Biomolecule Detection, Balaji Srinivasan Venkatesh May 2013

Development Of A Pdms Based Micro Total Analysis System For Rapid Biomolecule Detection, Balaji Srinivasan Venkatesh

Theses and Dissertations

The emerging field of micro total analysis system powered by microfluidics is expected to revolutionize miniaturization and automation for point-of-care-testing systems which require quick, efficient and reproducible results. In the present study, a PDMS based micro total analysis system has been developed for rapid, multi-purpose, impedance based detection of biomolecules. The major components of the micro total analysis system include a micropump, micromixer, magnetic separator and interdigitated electrodes for impedance detection. Three designs of pneumatically actuated PDMS based micropumps were fabricated and tested. Based on the performance test results, one of the micropumps was selected for integration. The experimental results ...


Development Of Mems-Based Corrosion Sensor, Feng Pan Dec 2012

Development Of Mems-Based Corrosion Sensor, Feng Pan

Theses and Dissertations

This research is to develop a MEMS-based corrosion sensor, which is used for monitoring uniform, galvanic corrosion occurring in infrastructures such as buildings, bridges. The corrosion sensor is made up of the composite of micro/nano metal particles with elastomers. The mechanism of corrosion sensor is based on the mass transport of corrosive species through the sensor matrix. When the metal particles in the matrix corrode, the electrical resistivity of the material increases due to increasing particle resistances or reduction of conducting pathways. The corrosion rate can be monitored by detecting the resistivity change in sensing elements. The life span ...


Silica Nanoparticle-Based Coatings With Superhydrophilic And Superhydrophobic Properties, Robert Andrew Fleming Dec 2012

Silica Nanoparticle-Based Coatings With Superhydrophilic And Superhydrophobic Properties, Robert Andrew Fleming

Theses and Dissertations

Superhydrophilic and superhydrophobic surfaces have potential for implementation into a variety of fields, including self-cleaning surfaces, anti-fogging transparent materials, and biomedical applications. In this study, sandblasting, oxygen plasma treatments, silica nanoparticle films, and a low surface energy fluorocarbon film were employed to change the natural surface wettability of titanium, glass, and polyethylene terephthalate (PET) substrates, with an aim to produce superhydrophilic and superhydrophobic behavior. The effects of these surface modifications are characterized by water contact angles (WCAs), surface wetting stability, surface morphology and roughness, surface elemental composition, and optical transmittance measurements. The results show that stable superhydrophilic and superhydrophobic surfaces ...


Design, Fabrication, Testing Of Cnt Based Isfet And Characterization Of Nano/Bio Materials Using Afm, Zhuxin Dong Dec 2012

Design, Fabrication, Testing Of Cnt Based Isfet And Characterization Of Nano/Bio Materials Using Afm, Zhuxin Dong

Theses and Dissertations

A combination of Carbon Nanotubes (CNTs) and Ion Selective Field Effect Transistor (ISFET) is designed and experimentally verified in order to develop the next generation ion concentration sensing system. Micro Electro-Mechanical System (MEMS) fabrication techniques, such as photolithography, diffusion, evaporation, lift-off, packaging, etc., are required in the fabrication of the CNT-ISFET structure on p-type silicon wafers. In addition, Atomic Force Microscopy (AFM) based surface nanomachining is investigated and used for creating nanochannels on silicon surfaces. Since AFM based nanomanipulation and nanomachining is highly controllable, nanochannels are precisely scratched in the area between the source and drain of the FET where ...


Computational Design Of The Electrical And Mechanical Performance Of Steerable Mems Antennas, Morgan Andrew Roddy Dec 2012

Computational Design Of The Electrical And Mechanical Performance Of Steerable Mems Antennas, Morgan Andrew Roddy

Theses and Dissertations

This thesis describes the origins, improvements, and variations of a broadband microwave antenna that can be beam-steered by a micro-electromechanical system (MEMS). The steerable MEMS antenna of this work was comprised of a planar antenna on top of a Silicon membrane. The membrane is etched to create a gimbal hinge structure and a platform which supported the antenna and gave it one or two degrees of freedom of rotation. The antennas presented were broadband and fed by a coplanar waveguide (CPW) transmission line which traversed the hinge structure. The antenna's orientation in space was designed to be changed through ...


Design And Implementation Of A Small Electric Motor Dynamometer For Mechanical Engineering Undergraduate Laboratory, Aaron Farley May 2012

Design And Implementation Of A Small Electric Motor Dynamometer For Mechanical Engineering Undergraduate Laboratory, Aaron Farley

Theses and Dissertations

This thesis set out to design and implement a new experiment for use in the second lab of the laboratory curriculum in the Mechanical Engineering Department at the University of Arkansas in Fayetteville, AR. The second of three labs typically consists of data acquisition and the real world measurements of concepts learned in the classes at the freshman and sophomore level. This small electric motor dynamometer was designed to be a table top lab setup allowing students to familiarize themselves with forces, torques, angular velocity and the sensors used to measure those quantities, i.e. load cells and optical encoders ...


Understanding The Role Of A Bio-Inspired Surface Modification For Delayed Icing, Clayton Schenk Aug 2011

Understanding The Role Of A Bio-Inspired Surface Modification For Delayed Icing, Clayton Schenk

Theses and Dissertations

Atmospheric icing event is problematic for outdoor structures because it can damage, slow, impede, and danger general routine. For a wind turbine blade, it can damage, disrupt movement, and cause potentially dangerous ice throw. Anti-icing based on a surface texture is advantageous due to the low cost of maintenance and there is no additional requirement of energy output for preventing the icing problem. This work is based on the biomimicry of the superhydrophobic nature of the lotus leaf, whereas the limited wettability supports the water to flow freely from the surface structure. The phenomenon is based on a morphology and ...


A Solid State Nitrogen Gas Generating Chip And Applications For Picosatellites, Kyle Godin Aug 2011

A Solid State Nitrogen Gas Generating Chip And Applications For Picosatellites, Kyle Godin

Theses and Dissertations

A microscale gas generating chip has many applications; in this study, applications relating to picosatellites have been considered. Cube satellites, a type of picosatellite, are of mass around one kilogram and side length 10cm x 10cm x 10cm. Their launches are becoming more numerous since their debut ten years ago. Their low cost and deployment system makes space accessible to agencies hitherto barred from it, such as universities and small governments. However, their power, mass, and volume budget is extremely tight. A microscale gas chip could compete with other designs for attitude control devices, most not flown yet as cube ...


Increasing The Sensitivity Of Surface Acoustic Wave (Saw) Chemical Sensors And Other Chemical Sensing Investigations, Nina R. Smith Mar 2010

Increasing The Sensitivity Of Surface Acoustic Wave (Saw) Chemical Sensors And Other Chemical Sensing Investigations, Nina R. Smith

Theses and Dissertations

The work involves the fabrication and testing of three different surface acoustic wave (SAW) device designs, an investigation of nanowires sensitive to chemicals and preconcentrator prototypes to include with chemical sensors. The SAW chemical sensor designs include modifications to a basic SAW device to see if the sensitivity of the SAW device is increased. The modifications consist of etched trenches along the propagation field, coating the device with carbon nanotubes (CNTs) under the chemically sensitive layer and coating CNTs on top of the chemically sensitive layer. SAW devices are coated with Nafion®, a polymer sensitive to ethanol. The tests indicate ...


Investigation Of Thermal Management And Metamaterials, Calvin T. Roman Mar 2010

Investigation Of Thermal Management And Metamaterials, Calvin T. Roman

Theses and Dissertations

Thermal metamaterials are materials composed of engineered, microscopic structures that exhibit unique thermal performance characteristics based primarily on their physical structures and patterning, rather than just their chemical composition or bulk material properties. The heat transfer performance attributes of a thermal metamaterial are such that similar performance cannot be obtained using conventional materials or compounds. Thermal metamaterials are an emerging technology, and are just now beginning to be acknowledged and developed by the microelectronics and material sciences community. This thesis effort analyzed the current state of thermal metamaterial research, examined the physics and theory of heat transfer and electrical conductivity ...


Investigation Into Contact Resistance And Damage Of Metal Contacts Used In Rf-Mems Switches, Kevin W. Gilbert Dec 2009

Investigation Into Contact Resistance And Damage Of Metal Contacts Used In Rf-Mems Switches, Kevin W. Gilbert

Theses and Dissertations

This research examines the physical and electrical processes involved in lifecycle failure of Microelectromechanical (MEMS) Radio-Frequency (RF) cantilever beam ohmic contact switches. Failures of these switches generally occur at the contact, but complete details of performance of microcontacts are difficult to measure and have not been previously reported. This study investigated the mechanics of microcontact behavior by designing and constructing a novel experimental setup. Three representative contact materials of varying microstructure (Au, Au5%Ru, Au4%V2O5) were tested and parameters of contact during cycling were measured. The Au4%V2O5, a dispersion strengthened material developed ...


A Dynamic Study Of The Electro Internal Combustion Engine On Digital Computer /, Ajit Barman Jan 1974

A Dynamic Study Of The Electro Internal Combustion Engine On Digital Computer /, Ajit Barman

Theses and Dissertations

No abstract provided.