Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 898

Full-Text Articles in Entire DC Network

Technical Evaluation Of Floating Offshore Wind Plants And Installation Operations, Cengizhan Cengiz Mar 2024

Technical Evaluation Of Floating Offshore Wind Plants And Installation Operations, Cengizhan Cengiz

Masters Theses

Offshore wind energy is witnessing remarkable growth, driven by the global shift towards sustainable and renewable energy sources. A pivotal innovation in this domain is floating offshore wind technology, which represents a transformative opportunity in harnessing wind energy from deep waters, where conventional fixed-bottom offshore wind systems face limitations due to depth constraints and escalating costs. In light of regional commitments to lower carbon emissions in energy generation, the accessibility of deep-water zones, rich in offshore wind resources, becomes increasingly critical. Despite the promising prospects, the floating offshore wind turbine (FOWT) developments present intricate challenges encompassing design, installation, and operational …


Modular Composite Sandwich Structures For Thermal And Structural Retrofitting Of Existing Buildings, Marc Al Ghazal Dec 2023

Modular Composite Sandwich Structures For Thermal And Structural Retrofitting Of Existing Buildings, Marc Al Ghazal

Masters Theses

Around 40% of global energy consumption and 30% of worldwide carbon dioxide (CO2) emissions are attributed to buildings. Most of this consumption is dedicated to ensuring thermal comfort. The goal of this research was to develop and field validate retrofit solutions to improve the energy efficiency of buildings. Exterior cladding panels were designed and tested to ensure adequate thermal and structural performance. Sandwich panels (glass fibers reinforced polymer (GFRP) skins and polymeric foam cores) were fabricated using the vacuum assisted resin transfer molding (VARTM) process. Extruded polystyrene (XPS) and polyurethane (PU) foams were compared as core materials through a series …


Surface Location Error In Robotic Milling: Modeling And Experiments, Richard Henry Swan Jr. Dec 2023

Surface Location Error In Robotic Milling: Modeling And Experiments, Richard Henry Swan Jr.

Masters Theses

Robotic milling offers new opportunities for discrete part manufacturing as an alternative to milling using large conventional machine tools. The advantage of industrial robots is their large work volume, configurability, and comparatively low cost. However, robots are significantly less stiff than conventional machine tools, which can lead to poor surface finish, low machining accuracy, and low material removal rates. The purpose of this research is to predict the geometric errors, or surface location errors, that occur in a robotic mulling tool path, validate these predictions with machining tests, and compensate these errors by tool path modification. Compared with conventional machine …


Nonlinear Finite Element Model For Functionally Graded Porous Circular/Annular Micro-Plates Under Thermal And Mechanical Load, Enrique Nava Munoz Dec 2023

Nonlinear Finite Element Model For Functionally Graded Porous Circular/Annular Micro-Plates Under Thermal And Mechanical Load, Enrique Nava Munoz

Masters Theses

A nonlinear finite element model for micro circular/annular plates under thermal and mechanical loading is developed using a third order shear deformation theory. In the kinematic assumptions, the change of plate thickness is allowed and no transverse shear strains are considered on the top and bottom surfaces. A power-law distribution is utilized to account for variations of two constituents through the thickness of the plate. Three different types of porosity distributions are considered. The strain gradient effect in micro scale structures is considered using the modified couple stress theory. The dynamic version of the principle of virtual displacements is used …


Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa Nov 2023

Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa

Masters Theses

Graphene, an allotrope of carbon, has demonstrated exceptional mechanical, thermal, electronic, and optical properties. Complementary to such innate properties, structural modification through chemical functionalization or defect engineering can significantly enhance the properties and functionality of graphene and its derivatives. Hence, understanding structure-property relationships in graphene-based metamaterials has garnered much attention in recent years. In this thesis, we present molecular dynamics studies aimed at elucidating structure-property relationships that govern the thermomechanical response of interlayer-bonded graphene bilayers.

First, we present a systematic and thorough analysis of thermal transport in interlayer-bonded twisted bilayer graphene (IB-TBG). We find that the introduction of interlayer C-C …


Improving Irrigant Flow Characteristics For Enhanced Root Canal Therapy: A Numerical Study, Bibek Banjaday Aug 2023

Improving Irrigant Flow Characteristics For Enhanced Root Canal Therapy: A Numerical Study, Bibek Banjaday

Masters Theses

This numerical study investigates the flow characteristics within a root canal during a manual endodontic treatment. To underscore the difference in root canal geometry, a simplified root canal (frustum of a cone) and a more complex (realistic) root canal geometry were considered. The needle utilized in all simulations is a side-vented 30G KerrHaweIrrigation Probe, KerrHawe SA, Bioggio, Switzerland. For both root canal geometries, the effect of variation of fluid inlet velocity, needle insertion depth, and needle tilt angle on flow characteristics was examined via velocity contours, turbulent intensity, wall shear stress, and streamline and vector plots. The fluid was Sodium …


Enhancing Human Key Point Identification: A Comparative Study Of High-Resolution Vicon Dataset And Coco Dataset Using Bpnet, Bibash Lama Aug 2023

Enhancing Human Key Point Identification: A Comparative Study Of High-Resolution Vicon Dataset And Coco Dataset Using Bpnet, Bibash Lama

Masters Theses

Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study presents a high-resolution dataset created using the VICON motion capture system and three differently oriented 2D cameras, that can be used to train different neural networks for estimating the 2D key joint positions of the person from the 2D images or videos. The participants in the study included 25 healthy adults (17 males and 8 females) performing normal gait movements for about 2 to 3 seconds. The VICON system captured 3D ground truth data, while the three 2D cameras collected …


Improving Energy Efficiency Of School Buildings With Solar-Assisted Cooling For The Maldives, Ahmed Fathhee Aug 2023

Improving Energy Efficiency Of School Buildings With Solar-Assisted Cooling For The Maldives, Ahmed Fathhee

Masters Theses

Anthropogenic activities are responsible for the impact of global climate change because of burning fossil fuels releasing harmful gases into the environment. As a result, the global temperature has risen about 1.18 °C since 1880, causing the global sea level to rise by 178 mm over the past century. This is a threat to countries that are closer to the ocean, especially the low-lying countries such as the Maldives. It is predicted if the sea level keeps rising, most of these islands could be below sea level by 2030.

The Maldives has a tropical climate requiring cooling to achieve thermal …


The Effects Of Hurricane Wind Field Characteristics On Wind Blade Loads, Michael S. Tsai Aug 2023

The Effects Of Hurricane Wind Field Characteristics On Wind Blade Loads, Michael S. Tsai

Masters Theses

Over recent years, offshore wind energy has been growing around the world. This necessitates placing wind turbines directly in or near the oceans where hurricanes can be. Previous research has suggested that hurricane wind veer and direction change can have adverse loading effects on the turbine. Such effects can create damage to the blade or worsen existing ones. Currently, there is no known design standard for addressing wind veer and direction change specifically from hurricanes. Quantifying the loading contribution from these phenomena is not abundant either.

This thesis seeks to demonstrate a proposed procedure for defining design veer profiles and …


Transient Thermal Performance Enhancement Of Phase Change Materials Through Novel Pin Arrangements Under Varied Gravity Conditions, Junaid Khan Aug 2023

Transient Thermal Performance Enhancement Of Phase Change Materials Through Novel Pin Arrangements Under Varied Gravity Conditions, Junaid Khan

Masters Theses

This thesis presents a comprehensive examination of encapsulation techniques and performance enhancement strategies for Phase Change Materials (PCMs) in the thermal management of spacecraft avionics. This research contributes to optimizing PCM applications in spacecraft through historical analysis, transient thermal performance enhancement, and computational studies.

The first chapter explains the significance of PCMs in passive thermal management since the beginning of space-age technology, it underlines the low thermal conductivity of PCMs and the necessity of incorporating materials with high thermal conductivity, such as metal foams, to improve heat transfer. It also discusses various advancements in PCM research for spacecraft thermal management …


Design Of Machine Tool Cross Beam Using Metal Big Area Additive Manufacturing, Tyler Poon Aug 2023

Design Of Machine Tool Cross Beam Using Metal Big Area Additive Manufacturing, Tyler Poon

Masters Theses

The modern world would not be what it is now without machine tools. Advances in materials and processes, such as carbon fiber and additive manufacturing (AM), enable the design space for machine tool components to expand. However, machine tool components require accurate geometry, which is not available from parts produced by metal Big Area Additive Manufacturing (mBAAM). This project outlines the process in which a traditionally manufactured machine tool component, a welded box structure on an existing machine tool, was redesigned to be made using mBAAM. The goal was to design a structure that was printable using the MedUSA system …


In Situ Process Monitoring And Machine Learning Based Modeling Of Defects And Anomalies In Wire-Arc Additive Manufacturing, Eduardo Miramontes Aug 2023

In Situ Process Monitoring And Machine Learning Based Modeling Of Defects And Anomalies In Wire-Arc Additive Manufacturing, Eduardo Miramontes

Masters Theses

Wire Arc Additive Manufacturing (WAAM) has made great strides in recent years however, there remain numerous persistent challenges still hindering more widespread adoption. Defects in the parts produced degrade their mechanical performance. Inconsistency in the geometry of the weld beads or undesirable anomalies such as waviness, or humps can lead to loss of geometric accuracy and in extreme cases, when anomalies propagate to subsequent layers, build failure. Such defects can be mitigated by a controls framework, which would require a model that maps undesirable outcomes to information about the process that can be obtained in real time. This thesis explores …


Fungi In Flux | Designing Regenerative Materials And Products With Mycelium, Arvind Bhallamudi Jun 2023

Fungi In Flux | Designing Regenerative Materials And Products With Mycelium, Arvind Bhallamudi

Masters Theses

As the world grapples with the escalating crisis of climate threats and environmental degradation, this research delves into the synergistic potential of design and biology, developing safe and sustainable materials for applications in prototyping, furniture and interior design. Harnessing the power of a unique organism - fungi, the study proposes an accessible, efficient, and resilient material resource system. It utilizes local waste streams and mycelium (the vegetative part of fungi) to grow functional structures. An experimental and small-scale protocol is modeled by testing bio-fabrication and bio-printing methods. The composites' performance qualities and characteristics are evaluated through mechanical testing and a …


Comparative Analysis On Low Cost Continuous Carbon Fiber Polypropylene Composite Using Compression Molding And Automated Tape Placement, Benjamin U. Schwartz May 2023

Comparative Analysis On Low Cost Continuous Carbon Fiber Polypropylene Composite Using Compression Molding And Automated Tape Placement, Benjamin U. Schwartz

Masters Theses

Carbon fiber reinforced plastics (CFRP) are widely used throughout the aerospace industry where a weight reduction remains the highest priority with less emphasis on cost. Textile grade carbon fiber (TCF) and other low cost carbon fiber (LCCF) alternatives have recently emerged for use in the automotive market where emissions regulations have pushed automotive manufacturers and research institutions to look for cost effective light weight materials. Fiber reinforced thermoplastics provide an effective solution that align with automotive design including low cost, high processing rates, high impact toughness, unlimited shelf life, and recyclability.

TCF and Zoltek_PX35 fibers are two LCCF aimed at …


Correlating Large-Format Additive Manufacturing Processing Parameters To Fiber Length And The Mechanical Performance Of Reinforced Polymer Composites, Andrew Phillip Rhodes May 2023

Correlating Large-Format Additive Manufacturing Processing Parameters To Fiber Length And The Mechanical Performance Of Reinforced Polymer Composites, Andrew Phillip Rhodes

Masters Theses

The Big Area Additive Manufacturing (BAAM) system at Oak Ridge National Laboratory has been used to produce carbon fiber reinforced structures for several years, including vehicles, building constituents, composite tooling, etc. While the development of a large-format polymer additive manufacturing (AM) system has moved quickly, the impact of the BAAM’s extruder on the length of carbon fiber feedstock has not been systematically studied. Numerous studies in processing fiber reinforced thermoplastics in plasticizing and injection molding systems have shown that fibers are subjected to significant shear as they are processed, which can cause a drastic reduction in fiber length which negatively …


Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield May 2023

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield

Masters Theses

All combustion systems from large scale power plants to the engines of cars to gas turbines in aircraft are looking for new fuel sources. Recently, clean energy for aviation has come into the foreground as an important issue due to the environment impacts of current combustion methods and fuels used. The aircraft industry is looking towards hydrogen as a new, powerful, and clean fuel of the future. However there are several engineering and scientific challenges to overcome before hydrogen can be deployed into the industry. These issues
range from storing the hydrogen in a viable cryogenic form for an aircraft …


Wind-Wave Misalignment Effects On Multiline Anchor Systems For Floating Offshore Wind Turbines, Doron T. Rose Apr 2023

Wind-Wave Misalignment Effects On Multiline Anchor Systems For Floating Offshore Wind Turbines, Doron T. Rose

Masters Theses

Multiline anchors are a novel way to reduce the cost of arrays of floating offshore wind turbines (FOWTs), but their behavior is not yet fully understood. Through metocean characterization and dynamic simulations, this thesis investigates the effects of wind-wave misalignment on multiline anchor systems. Four coastal U.S. sites are characterized in order to develop IEC design load cases (DLCs) and analyze real-world misaligned conditions. Stonewall Bank, Oregon showed the highest 500-year extreme wave height, at 16.6 m, while Virginia Beach, Virginia showed the highest 500-year wind speed, at 56.8 m/s. Misalignment probability distributions, at all sites, are found to converge …


Improving Future Vehicle Fuel Economy And Operational Design Domain Through Novel Data Pipelines, Kyle James Carow Apr 2023

Improving Future Vehicle Fuel Economy And Operational Design Domain Through Novel Data Pipelines, Kyle James Carow

Masters Theses

Modern automobiles have greatly advanced in recent years, with technological developments that enhance performance, safety, and comfort. However, there is still much room for improvement. Today’s vehicles are heavily reliant on the combustion of fossil fuels, proven to be harmful for the environment on both a local and global scale. In addition, the safety benefits of autonomous vehicles and advanced driver assistance systems are not yet fully realized due to the limited operational design domain of these technologies. In this research, these needs are addressed through the development of two novel data pipelines. In the first study, a novel methodology …


Area Average Surface Transfer Coefficient In Unit Cell Geometries, Benjamin Gabriel Mackey Jan 2023

Area Average Surface Transfer Coefficient In Unit Cell Geometries, Benjamin Gabriel Mackey

Masters Theses

"Honeycombs, metal foams, and lattice structures all provide a way to increase heat transfer due to better fluid mixing and larger surface area. Specifically, lattice structures can be a great way to provide heat transfer enhancement due to the ability to customize and optimize the unit cell geometry. In this research, a novel yet simple unit cell geometry is chosen for study. Four different configurations are tested in a lower Reynolds number range, 300–1800: single unit cell, two-unit cells in series, three-unit cells in series, and a 3x3 unit cell array. The Sherwood number of each configuration is found by …


Repeatability And Reproducibility Analyses For Structured Light Scanning, Leah Jacobs Dec 2022

Repeatability And Reproducibility Analyses For Structured Light Scanning, Leah Jacobs

Masters Theses

Structured light scanning is used to create a digital twin of a manufactured part. Features can be extracted from this digital twin to determine if the part meets the designer’s intent and required tolerances. This paper describes a repeatability and reproducibility study for a selected structured light scanning system and measurement artifact.


Measurement Of Low-Speed Impinging Jet Structure Using Temperature Sensitive Paint, Arthur Dean Woodworth Dec 2022

Measurement Of Low-Speed Impinging Jet Structure Using Temperature Sensitive Paint, Arthur Dean Woodworth

Masters Theses

Temperature sensitive paint (TSP) is used to analyze surface flow structures driven by a jet impinging on a heated steel sheet. Temperature and Nusselt number images are calculated from CCD images of the TSP surface. TSP calibration is discussed. Skin friction data is obtained from the temperature images.

Data is collected for metal and 3D-printed plastic nozzles of varying shape and size at one or two jet airspeeds depending on the nozzle. For the circular nozzles, data is collected for four Reynolds numbers at impinging angles of 90, 70, and 50 degrees. For the elliptical nozzles and the star-shaped nozzle, …


Path Planning For Additive Manufacturing Of Wire Arc Additive Manufacturing And Blue Light Fringe Projection Scanning, Tiffany Patricia Quigley Dec 2022

Path Planning For Additive Manufacturing Of Wire Arc Additive Manufacturing And Blue Light Fringe Projection Scanning, Tiffany Patricia Quigley

Masters Theses

Current methods of manufacturing large scale parts can take up to six months to generate the objective product. The objective of the wire arc additive manufacturing (WAAM) hybrid cell is to significantly reduce lead time associated with large scale parts. The WAAM process utilizes a 6 degree-of-freedom (DOF) robot manipulator in addition to a 2 DOF part positioner. 5 degrees of freedom are necessary for an effective WAAM process, leaving 3 DOF as redundant in this cell. This thesis serves to prove successful implementation of redundant kinematics on a WAAM robotic system. This is accomplished by maintaining a gravity aligned …


Image Based Processing For Weld Defect Detection, Shems-Eddine Belhout Dec 2022

Image Based Processing For Weld Defect Detection, Shems-Eddine Belhout

Masters Theses

There is a growing need for automation in the welding industry due to a growing shortage in skilled welders. TIG [Tungsten Inert Gas] welding, a method of welding that uses an electrode shielded by gas and is fed externally by a wire, is incredibly advantageous for its precise heat control. TIG welding is considered the standard for nuclear application which requires highly precise welds to be performed. Robotic welding can address this issue, and one major problem that occurs during welding is welding defects. Typical weld defect detection requires a highly knowledgeable welder or destructive and nondestructive evaluation. Destructive evaluation …


Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle Dec 2022

Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle

Masters Theses

Current orthopedic implants are overwhelmingly composed from metallic materials. These implants show superior mechanical properties, but this can additionally result in stress shielding due to a modulus mismatch between the bone tissue and implanted device. Polymeric implants reduce this stress shielding effect but have much lower mechanical properties, limiting their use. Polylactic acid (PLA) is a widely used biodegradable thermoplastic polymer, however, its use has been limited by the polymer’s mechanical properties and rapid loss of strength during degradation in vivo. Polyether-ether-ketone (PEEK) is another common biocompatible polymer , with chemical and mechanical properties which make it a popular alternative …


Study Of Urethane Double-Coated Nylon Membranes For Fluid-Storage Applications, Micah Austin Howell Aug 2022

Study Of Urethane Double-Coated Nylon Membranes For Fluid-Storage Applications, Micah Austin Howell

Masters Theses

Polymer-coated fabrics are used for many fuel and water storage applications, such as in U.S. military field operations. Urethane-double-coated nylon (UDCN) is one such material used in collapsible fluid storage tanks. Research into the mechanical properties of UDCN membranes under different environmental conditions is necessary for substantiating its current operations as well as developing new technologies. Novel modular, closed-loop and scalable pumped-storage hydropower (PSH) systems are one technology that could use UDCN membrane tanks in order to mitigate large costs, risks, environmental impacts, and time-for deployment associated with PSH system construction due to their modular, closed-loop technology. This study focuses …


Upscaling And Development Of Linear Array Focused Laser Differential Interferometry For Simultaneous 1d Velocimetry And Spectral Profiling In High-Speed Flows, Kirk Davenport Aug 2022

Upscaling And Development Of Linear Array Focused Laser Differential Interferometry For Simultaneous 1d Velocimetry And Spectral Profiling In High-Speed Flows, Kirk Davenport

Masters Theses

In this research a new configuration of linear array-focused laser differential interferometry (LA-FLDI) is described. This measurement expands on previous implementations of LA-FLDI through the use of an additional Wollaston prism. This additional prism expands the typical single LA-FLDI column into two columns of FLDI point pairs. The additional column of probed locations allows for increased spatial sampling of frequency spectra as well as the addition of simultaneous wall normal velocimetry measurements. The new configuration is used to measure the velocity profile and frequency content across a Mach 2 turbulent boundary layer at six wall normal locations simultaneously. Features of …


Applications Of Thermal Energy Storage With Electrified Heating And Cooling, Erich Ryan Jun 2022

Applications Of Thermal Energy Storage With Electrified Heating And Cooling, Erich Ryan

Masters Theses

With a clear correlation between climate change and rising CO2 emissions, decarbonization has garnered serious interest in many sectors to limit the adverse effects of global warming. Heating and cooling systems have been a focus of decarbonization efforts, with heat pumps becoming more popular in the United States and abroad. In fact, heating, ventilation, and air conditioning accounts for nearly 27% of total energy use in the United States [1]. Ground source heat pumps (GSHP) utilizing borehole heat exchangers (BHE) have been shown to be an effective method of electrifying heating and cooling systems, maintaining some of the best …


Design, Fabrication, And Validation Of A Three-Zone Cell For Absorption Spectroscopy, Derek W. Burkhart May 2022

Design, Fabrication, And Validation Of A Three-Zone Cell For Absorption Spectroscopy, Derek W. Burkhart

Masters Theses

Spectroscopic databases such as HITRAN and HITEMP are required to characterize the spectral parameters of chemical species to ensure accurate calculations of gas concentrations and temperatures from laser absorption spectroscopy. These databases are populated by performing spectroscopic experiments at controlled conditions. Databases lack spectral parameters for combustion species such as CO, CO2, and H2O at temperatures combustion temperatures in the mid-IR wavelength range due to difficulties in creating an experimental absorption cell capable of surviving combustion temperatures. A high temperature absorption cell was previously used at the University of Tennessee Space Institute (UTSI) for high temperature spectroscopic experiments with combustion …


Sensor Comparison For Low-Cost Dynamic Force Measurement In Milling, Zachary Mason May 2022

Sensor Comparison For Low-Cost Dynamic Force Measurement In Milling, Zachary Mason

Masters Theses

Machine cutting forces are commonly measured using piezoelectric dynamometers. Such dynamometers can be prohibitively expensive and may still require extensive post processing. Previous work used a low-cost single degree of freedom constrained motion dynamometer (CMD) in conjunction with a knife edge sensor to determine the cutting forces through inverse force filtering. In that approach, the measured displacement of the CMD was transformed into the frequency domain by the fast Fourier transform (FFT) and convolved with the inverted receptance frequency response function (FRF) to yield force in the frequency domain. The force was then converted to the time domain using the …


A Numerical Optimization Study Of A Novel Electrospray Emitter Design, Joshua H. Howell May 2022

A Numerical Optimization Study Of A Novel Electrospray Emitter Design, Joshua H. Howell

Masters Theses

The low thrust and high specific impulse of electric propulsion has been brought to the forefront for CubeSat and small spacecraft applications. Electrospray thrusters, which operate via electrostatic principles, have seen much research, development, and application in recent years. The small sizes of the spacecraft that utilize electrospray thrusters has focused development into the miniaturization of this technology to the micro-scale. Miniaturization introduces design challenges that must be addressed, including power supply mass and footprint requirements. This consequence requires investigation into the effects of design choices on the thruster onset voltage, defined as the voltage at which ion emission begins. …