Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Masters Theses

Materials Science and Engineering

Missouri University of Science and Technology

Keyword
Publication Year

Articles 1 - 30 of 442

Full-Text Articles in Entire DC Network

Development And Testing Of A Hyperbaric Aerodynamic Levitator For Containerless Materials Research, Sydney Elizabeth Boland Jan 2023

Development And Testing Of A Hyperbaric Aerodynamic Levitator For Containerless Materials Research, Sydney Elizabeth Boland

Masters Theses

"This research focused on the development and testing of a hyperbaric aerodynamic levitator for container less materials research of specimens at temperatures greater than 2000°C and pressures up to 10.3 MPa (1500 psi). The effect of specimen size, specimen density, pressure, and flow rate on the levitation behavior was studied. Lightweight specimens demonstrated two stable levitation regimes that were speculated to be associated with a change in the turbulent wake structure. The hyperbaric aerodynamic levitator was also used to determine the effect of pressure on the heat transfer by studying the melting behavior of a levitated 3.0 mm diameter alumina …


Suppressing Aluminum/Silica Exchange Reaction Between High Aluminum Steel And Mold Flux During Continuous Casting Process, Kuanysh Nurbekuly Yermukhanbetov Jan 2023

Suppressing Aluminum/Silica Exchange Reaction Between High Aluminum Steel And Mold Flux During Continuous Casting Process, Kuanysh Nurbekuly Yermukhanbetov

Masters Theses

"Mold flux plays one of the critical roles in continuous casting of steel. It performs five primary functions: thermal and chemical insulation, lubrication between the steel strand and mold, absorption of inclusions, and promotion of even heat flux. The aluminum/silica exchange reaction occurring between steel and mold flux during the continuous casting process poses significant challenges in the steel industry. This reaction can lead to various defects in the cast product and adversely affect its surface quality, as well as downstream processing.

In this work, effectiveness of two approaches, namely slag dopant additions and electrochemical techniques, in suppressing the exchange …


Effect Of Boron In Cast Iron, Suyash Durendra Pawaskar Aug 2022

Effect Of Boron In Cast Iron, Suyash Durendra Pawaskar

Masters Theses

"Boron, mostly considered a residual element, has started to cause issues in the cast iron foundries by causing a decrease in the strength of pearlitic gray and ductile iron castings. Because of the increase in the use of boron-added steel scrap from automotive steel and a lack of agreement on the critical levels of boron in cast iron, foundries are facing difficulties in controlling the microstructure of gray iron castings when boron is present. The current investigation was designed to analyze the effects of boron in cast irons and predict a mechanism to understand its effects with a vision of …


Understanding Charge Effects On Marked Ball Wear Rates – A Corrosion Study, John Bailey Fletcher Aug 2022

Understanding Charge Effects On Marked Ball Wear Rates – A Corrosion Study, John Bailey Fletcher

Masters Theses

"To measure the wear rates of grinding balls within a ball mill, marked ball wear tests (MBWTs) have been used extensively. Using the wear rates from a MBWT, operators select the most cost-effective media for their grinding application. One factor that a MBWT does not account for is the possible interaction between different media materials which could affect their corrosion rates. Galvanic coupling between dissimilar metals can cause significant changes in their corrosion rates. While galvanic interactions between minerals and grinding media have been studied, the interaction between dissimilar media has not. Corrosion rates and potentials of modern high carbon …


Zinc Plating From Alkaline Non-Cyanide Bath, Abdul J. Mohammed Jan 2022

Zinc Plating From Alkaline Non-Cyanide Bath, Abdul J. Mohammed

Masters Theses

“Alkaline non-cyanide zinc plating baths are preferred when trying to avoid the toxicity of cyanide baths or corrosivity of acid baths. Without additives, alkaline zincate baths produce powdery non-adherent deposits which have no use in commercial plating. Additives must be added at optimum concentrations to produce adherent, bright and uniform zinc deposits. In this study electrochemical tests were used to determine effects of additives on cathodic polarization, throwing power and morphology of deposits. Current density distribution in a unique bath of 37.5 g L-1 Zn and 210 g L-1 NaOH was modelled using COMSOL and validated two plating …


Controlling Microalloy Interactions On Precipitation, Hot Ductility, And Microstructure -- Mechanical Property Relationships, Madhuri Varadarajan Jan 2022

Controlling Microalloy Interactions On Precipitation, Hot Ductility, And Microstructure -- Mechanical Property Relationships, Madhuri Varadarajan

Masters Theses

“One of the main problems faced in the continuous casting of micro-alloy steels is the formation of transverse cracks. Transverse cracks are surface, or near-surface cracks formed perpendicular to the casting direction. The research focuses on using laboratory hot tensile tests methods to determine the low ductility ranges in high strength steel grades with different micro-alloy additions of titanium, niobium, and vanadium. The hot ductility of commercially produced as-cast slab and beam blank samples was evaluated using two experimental methods: tensile testing utilizing a servo-hydraulic load frame with a resistance furnace and thermomechanical testing using rapid Joule heating. The tests …


Experimental Optimization Of Simulated Ring Rolling Operation For Heavy Rail Industry, Jacob M. Summers Jan 2022

Experimental Optimization Of Simulated Ring Rolling Operation For Heavy Rail Industry, Jacob M. Summers

Masters Theses

“Industrially cast AISI 1070 steel wheel pre-forms from Amsted Rail Co. were experimentally hot rolled to simulate the conditions for industrial wheel rolling. Ring rolling of near net shape castings can improve location specific properties by decreasing segregation, closing porosity, and reducing grain size without the use of multiple forging operations in a traditional forging line. As-cast wheel sections were subjected to thermomechanical processing routes using a 2-high rolling mill in a temperature range of 830°C to 1200°C. The goal being to simulate the ring rolling process and optimize benefits of mechanical properties of the as-rolled steel. Charpy V- and …


Characterization Of Cermet Fuel For Nuclear Thermal Propulsion (Ntp), James Floyd Mudd Jan 2022

Characterization Of Cermet Fuel For Nuclear Thermal Propulsion (Ntp), James Floyd Mudd

Masters Theses

“A manned flight to Mars is met with many technical challenges, not the least of which is the development of propulsion technology capable of moving a transit vehicle from Earth orbit to Mars orbit. NASA is investigating Nuclear Thermal Propulsion (NTP) as a way of reducing flight time and providing the option for a mid-mission abort. NTP, which uses a high temperature nuclear reactor to heat a propellant, requires advanced fuel materials capable of withstanding temperatures well in excess of 2000 K. Among the fuel options are ceramic metal (cermet) composites composed of refractory metals and Ultra-High Temperature Ceramics (UHTCs). …


The Effects Of Rigid Polyurethane Foam As A Confinement Material On Breaching Charge Detonations, Nathan Franz Paerschke-O'Brien Jan 2021

The Effects Of Rigid Polyurethane Foam As A Confinement Material On Breaching Charge Detonations, Nathan Franz Paerschke-O'Brien

Masters Theses

"The effects of a rigid polyurethane foam used as a confinement material on four types of breaching explosives were tested, focusing on the changes in shockwave peak pressures, detonation load compression forces, and brisance cratering abilities. The Plate Dent testing procedure was modified to incorporate a load cell force sensor, and two air overpressure sensors were included adjacent to the blast to quantify each test result. The testing variables focused on the polyurethane foam cure times and thickness volumes around the breaching explosives to determine the breaching charges' optimal energy output capabilities when confined by the foam material. The rigid …


Mechanical Activation And Cation Site Disorder Of Spinel-Based Ceramics, Cole A. Corlett Jan 2021

Mechanical Activation And Cation Site Disorder Of Spinel-Based Ceramics, Cole A. Corlett

Masters Theses

"This research focuses on the processing and the effects that has on the cation disorder of magnesium-aluminate spinel based (MgAl2O4) ceramics. The first goal of this project was to determine the effects of high-energy milling, i.e., mechanical activation, on cation disorder (inversion) within the spinel structure. First, 1:1 molar ratios of MgO:Al2O3 ceramics were processed using two green processing methods, ball milling (XD) and SPEX milling (mechanical activation, MA) followed by a subsequent annealing treatment in air to form a single spinel phase in each powder sample. Neutron diffraction analysis was employed to …


Toward Understanding Commercial Additives For Zincate Electrogalvanizing, Margaret Scott Jan 2021

Toward Understanding Commercial Additives For Zincate Electrogalvanizing, Margaret Scott

Masters Theses

"Cyanide zinc electrogalvanizing has been used for many years to produce high quality and uniform zinc coatings. Due to toxicity concerns, a significant amount of research has occurred to remove the use of cyanide while still producing a similar deposit. One of the resulting plating chemistries is the alkaline zincate bath.

Alkaline zincate plating has the advantages of low startup cost, low toxicity, and low corrosion rate. Despite these advantages, alkaline bath conditions do not produce acceptable zinc deposits without the use of plating additives, which can promote lustrous, smooth deposits. This research aims to: (1) generate fundamental electrochemical data …


On The Investigation Of Hot Tearing Behavior Of Continuous Cast Steel, Yanru Lu Jan 2020

On The Investigation Of Hot Tearing Behavior Of Continuous Cast Steel, Yanru Lu

Masters Theses

”Hot tearing has long been recognized as a major problem that plagues the development of the continuous casting process and results in low-quality products. Understanding of the mechanisms and the required conditions for the hot tearing formation is important for industries but has not been well-established yet. Thus, this research focuses on the hot tearing issue observed in continuous cast steel, by providing a summary of the current research progress and then introducing a new laboratory method to determine the thermo-mechanical properties relevant to hot tearing of different steel grades under different solidification conditions. In this method, an apparatus was …


Performance Evaluation Of Alsi10mg Fabricated By A Selective Laser Melting Process, David Michael Murphy Jan 2020

Performance Evaluation Of Alsi10mg Fabricated By A Selective Laser Melting Process, David Michael Murphy

Masters Theses

“Selective laser melting is becoming a widely used additive manufacturing technique that melts metal powder in a layer by layer process in order to build a desired part or geometry. Like many additive processes, selective laser melting allows for fabrication of parts with complex geometries. In order to fabricate a fully dense part there are a number of variables to take into account including: powder characteristics, laser parameters, and environmental parameters. Each of these variables can affect the microstructure and thus the mechanical performance of an additively manufactured part. In this work, the aluminum alloy AlSi10Mg was investigated. AlSi10Mg is …


Inclusion Control In Steel Castings, Koushik Karthikeyan Balasubramanian Jan 2020

Inclusion Control In Steel Castings, Koushik Karthikeyan Balasubramanian

Masters Theses

“Non-metallic inclusions are mainly comprised of oxides, sulfides, and nitrides, and are formed in liquid steel during the melting and refining process, as a result of reoxidation, worn-out refractories, or entrained slag. The notch toughness of high strength steels is particularly susceptible to the type, number, size, and distribution of non-metallic inclusions. High manganese and aluminum austenitic steels, or Fe-Mn-Al steels, have gained much interest in the military and automotive sector because of their excellent combinations of high strength and toughness. However, these steels are subject to both oxide bifilms and aluminum nitride, AlN, inclusions which form during melting and …


Prediction Of Crack Propagation In Zrb₂-Carbon Based Composites Using The Extended Finite Element Method, Leiren Danielle Jarvis Jan 2020

Prediction Of Crack Propagation In Zrb₂-Carbon Based Composites Using The Extended Finite Element Method, Leiren Danielle Jarvis

Masters Theses

“The ultra-high temperature ceramic, zirconium diboride (ZrB2) has long been researched for applications in extreme environments. Its high strength (> 400 MPa) and thermal conductivity (> 100 W/m•K) make it a candidate for use in hypersonic fight, but a low fracture toughness (< 3 MPa•m1/2) limits this use. In order to increase the fracture toughness without compromising the strength and thermal conductivity, experimental research has focused on the viability of engineered architectures using multiple materials to create a macrostructure. These architectures allow for the increase of fracture toughness thru crack deflection in the material.

Two architectures in particular, …


In-Situ X-Ray Imaging Of The Selective Laser Melting Process, Meelap M. Coday Jan 2020

In-Situ X-Ray Imaging Of The Selective Laser Melting Process, Meelap M. Coday

Masters Theses

"Fusion-based metal additive manufacturing (AM) has garnered much interest in recent decades. Despite the popularity of fusion-based AM technologies such as selective laser melting (SLM), there are still fundamental questions and uncertainties that need to be addressed. In this work, we focus on the understanding of the undercooling in the SLM process and the uncertainties induced by the laser beam size, power, and scan speed. First, we report the estimation of undercooling in the SLM process from the solidification rate measured by in-situ high-speed synchrotron x-ray imaging, based on the dendrite growth velocity model. The undercooling changes as a function …


Intrinsic Mechanical Properties Of Zirconium Carbide Ceramics, Nicole Mary Korklan Jan 2020

Intrinsic Mechanical Properties Of Zirconium Carbide Ceramics, Nicole Mary Korklan

Masters Theses

“This research focuses on the processing and mechanical properties of zirconium carbide ceramics (ZrCx). The first goal of this project was to densify near stoichiometric (i.e., x as close to 1 as possible) and nominally phase pure ZrCx. The maximum stoichiometry achieved for the ZrCx (C/Zr ratio of 0.92) was measured using gas fusion analysis. Hot pressing was used to obtain dense ZrCx. Archimedes was used to determine the relative density of hot pressed ZrCx at > 95%. Scanning electron microscopy (SEM) was used to determine the overall microstructure of the hot pressed …


Development Of Castrip Dual Phase Steel, Brenton Allen Hrebec Jan 2019

Development Of Castrip Dual Phase Steel, Brenton Allen Hrebec

Masters Theses

“Thermomechanical processing necessary to produce DP 980 steel using CASTRIP hot band was investigated. The resultant steel has an ultimate tensile strength of 1038 MPa, yield strength of 744 MPa, and total elongation of 8.6%. These mechanical properties were achieved by batch annealing the hot band at 649°C for 48 hours and cold rolling to a 20% reduction. The steel was continuously annealed to simulate a galvanization cycle with an intercritical temperature of 810°C. The possibility of improving the texture of the steel by warm rolling under dynamic strain aging conditions was investigated. Dynamic strain aging in the CASTRIP hot …


Performance Of One-Part And Two-Part Class C Fly Ash-Based Alkali Activated Mortars, Cedric Chani Kashosi Jan 2019

Performance Of One-Part And Two-Part Class C Fly Ash-Based Alkali Activated Mortars, Cedric Chani Kashosi

Masters Theses

“Seeking an eco-friendly concrete, researchers have conducted studies to fully replace ordinary Portland cement (OPC) with fly ash (FA) producing alkali-activated concrete (AAC). Results showed better performance of AAC in terms of high early compressive strength, and durability compared to conventional concrete. However, much is still unknown about the behavior of AAC. From the type of materials used, the curing procedure, and long-term strength development of these binders; a thorough investigation is needed in order to fill the existing gap from previous studies and thus make a step forward to the safely use of AAC in the construction industry. The …


The Effect Of Cell Size And Surface Roughness On The Compressive Properties Of Abs Lattice Structures Fabricated By Fused Deposition Modeling, Leah Hope Mason Jan 2019

The Effect Of Cell Size And Surface Roughness On The Compressive Properties Of Abs Lattice Structures Fabricated By Fused Deposition Modeling, Leah Hope Mason

Masters Theses

"Postprocessing is an important step in many manufacturing methods, but it is especially important for additive manufacturing. Researchers looking to improve the surface roughness of acrylonitrile butadiene styrene (ABS) parts fabricated by fused deposition modeling (FDM) have determined that acetone smoothing not only achieves improved surface roughness but increases compressive strength as well. This could be very beneficial to lattice structures, which are known for already having an excellent strength to weight ratio. If the compressive strength of ABS lattice structures could be improved even further using acetone smoothing, it could expand the applications for plastic lattice structures and improve …


Removal Of Antimony And Bismuth From Copper Electrorefining Electrolyte By Two Proprietary Solvent Extraction Extractants, Andrew Artzer Jan 2019

Removal Of Antimony And Bismuth From Copper Electrorefining Electrolyte By Two Proprietary Solvent Extraction Extractants, Andrew Artzer

Masters Theses

"Antimony and bismuth are two of the most problematic impurities in copper electrorefining (ER). Because of this, much research has been done investigating the ways to remove them. Processes that are currently being used industrially include anode additions, liberators, ion exchange (IX), and solvent extraction (SX). Of these, liberators and anode additions are the most common while SX is the least, mostly being used for arsenic removal. There are other methods that have been evaluated, but are not in commercial use. These include the use of various electrolyte additives, and adsorbents such as bentonite clay and heavy metal sulfates.

Two …


Characterization Of The Surface Condition In Aa6061 Resulting From Deep Rolling As A Function Of Common Industrial Parameters, Andrew Kenneth Layer Jan 2019

Characterization Of The Surface Condition In Aa6061 Resulting From Deep Rolling As A Function Of Common Industrial Parameters, Andrew Kenneth Layer

Masters Theses

"Roller burnishing is widely used in industry to improve the surface finish and fatigue life of components. As weight reduction continues to grow in the automotive and transportation industries, deep rolling can help maintain product performance by mitigating the increase in component stresses resulting from lower weight systems. Deep rolling parameters such as tool, applied angle, feed rate, spindle speeds, and relative tool direction all affect cycle time, product performance, and appearance. The effects of common industrial parameters on the resultant surface roughness and residual stress profiles were studied in this investigation. The samples were manufactured on a CNC lathe …


Inclusion Engineering In Femnal Steels, Rairu Vaz Penna Jan 2019

Inclusion Engineering In Femnal Steels, Rairu Vaz Penna

Masters Theses

"Low density high Mn and Al steels, or FeMnAl steels, show great promise for military vehicles and automotive applications in which high strength and toughness is a requirement. However, these steels are subject to processing challenges including development of oxide and nitride inclusions during melting and casting as well as a large as-cast grain size and heavy interdendritic segregation. This can lead to non-uniform heat treatment response and cracking during subsequent hot rolling. Adding up to 10%Al lowers the density of these steels by as much as 15%, unfortunately, this also results in large amounts of hard and faceted AlN …


Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals Jan 2018

Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals

Masters Theses

"This thesis outlines the development of a system used for determining the surface thermal diffusivity of both non-irradiated and irradiated materials. The motivation for this work is to establish a modulated photothermal radiometry (PTR) system on the campus of Missouri University of Science and Technology. One of the main efforts described in this thesis is the design and construction of the physical apparatus. Along the way, it was necessary to perform a detailed sensitivity analysis of the system to determine whether the expected signal emitted from the sample falls within the bounds of detectivity for the HgCdTe (MCT) detector used …


Grain Refinement Of High Alloy Stainless Steels In Sand And Directionally Solidified Castings, Dustin Alan Arvola Jan 2018

Grain Refinement Of High Alloy Stainless Steels In Sand And Directionally Solidified Castings, Dustin Alan Arvola

Masters Theses

"The goal of this research project is to develop an industrially viable melting process that will control the crystallization macrostructure of austenitic grades of cast steels. Titanium nitride (TiN) has proven to be an effective grain refiner of austenite. Theoretical simulation and experimental application has led to the development of a repeatable grain refining melt process for austenitic stainless steel alloys.

Grain refinement of the as-cast structure of Cr-Ni stainless steel alloys solidified with primary FCC, BCC and dual FCC/BCC phases was studied experimentally. Refinement was achieved in both cast ferritic and austenitic grades. Dual solidification of …


Characterization And Tailoring Of Powder Used In Additive Manufacturing And Plasma Spheroidization, Caitlin S. Kriewall Jan 2018

Characterization And Tailoring Of Powder Used In Additive Manufacturing And Plasma Spheroidization, Caitlin S. Kriewall

Masters Theses

"There are many processes that use metal powder as the starting material for the production of parts. With the growth of these manufacturing techniques, more critical part applications are being considered. In order to fully understand the process and create consistent parts, powder properties need to be well understood. Selective laser melting (SLM) is a powder bed-based additive manufacturing process. During processing, heat-affected powders are generated and can deposit within the build area. The current work investigated the characterization of heat-affected 304L stainless steel powder using techniques such as scanning electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy to detect …


Microstructural Development And Its Effect On Aqueous Corrosion Of A Borosilicate Glass Ceramic For Waste Vitrification, Nicholas Stephen Roberts Jan 2018

Microstructural Development And Its Effect On Aqueous Corrosion Of A Borosilicate Glass Ceramic For Waste Vitrification, Nicholas Stephen Roberts

Masters Theses

"Waste loadings of reprocessed spent nuclear fuel vitrified into borosilicate glass can be increased by precipitating environmentally stable phases concentrated with waste components in a chemically stable glass matrix. The principal objective of this thesis was to characterize the development of crystalline powellite (CaMoO4 and related phases) and oxyapatite (Ca2LN8Si6O26) in borosilicate glass-ceramics and to determine how the formation of those phases affected its chemical durability.

Borosilicate glasses provided by PNNL were re-melted and quenched at rates from over 300⁰C/s to ~0.05⁰C/s. Isothermal heat treatment experiments were conducted by quenching melts …


Facile Synthesis Of Nanostructured Metal Borides And Composites For Applications In Sustainable Energy, Maalavan Arivu Jan 2018

Facile Synthesis Of Nanostructured Metal Borides And Composites For Applications In Sustainable Energy, Maalavan Arivu

Masters Theses

"Electrocatalytic water splitting is a promising solution for sustainable energy generation since one of the half reactions lead to the formation of H2 which is a clean fuel. The other half of the reaction leading to O2 evolution is an energy intensive process necessitating the need for an electrocatalyst to break the activation barrier for the commencement of the reaction. In this work we will focus on expanding the family of non-oxidic OER electro-catalysts, especially borides, whereby, apart from facilitating delocalization of electron cloud on the catalytically active transition metal site, low anion electronegativity and increased covalency in …


Corrosion Performance Of Zirconium-Based Passivations On Electroplated Zinc Nickel, Madison Morgan Reed Jan 2018

Corrosion Performance Of Zirconium-Based Passivations On Electroplated Zinc Nickel, Madison Morgan Reed

Masters Theses

“Performance requirements for Department of Defense (DoD) electrical components include corrosion and electrical contact resistance. Historically, electroplated cadmium with a chromate conversion coating (CrCC) has been used to meet corrosion and contact resistance standards. However, replacements are needed for these materials because they are toxic and carcinogenic. Electroplated γ-ZnNi has been identified as an acceptable alternative to Cd. This study evaluated commercially available Zr-based thin films and sealers as passivations for potential replacement of CrCCs. Ten different passivations were tested and compared with bare γ-ZnNi. X-Bond and Zircobond passivations were found to provide some improvement to the bare ZnNi corrosion …


Research And Development Of Optically Transparent Join With Low Processing Temperatures, Eric Kevin Muskovin Jan 2018

Research And Development Of Optically Transparent Join With Low Processing Temperatures, Eric Kevin Muskovin

Masters Theses

The purpose of this study was to investigate durable solar cell cover glass joins produced by diffusion bonding with deep eutectic solvents (DES) and to develop a novel process of joining optically transparent materials at low temperatures. A joined PV cell-glass specimen was characterized using Raman, μ-FTIR, SEM-EDS, and thin-film XRD. DESs were created with malonic acid (MAL) and choline chloride (ChCl) of varying composition factors (CF; CF=MAL/ChCl). Joining borosilicate glass coupons was attempted using DESs with CF = 0.65 and 1 at temperatures between 100-150 °C for 20 hours. Joining the glass coupons failed at all temperatures and oxygen …