Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

The Future Of Alternative Energy? Simulating Methyl Stearate Pyrolysis Via Molecular Dynamic Processes, Sarah J. Adeoye Jan 2023

The Future Of Alternative Energy? Simulating Methyl Stearate Pyrolysis Via Molecular Dynamic Processes, Sarah J. Adeoye

MSU Graduate Theses

The process of extracting and refining crude oil is both expensive and environmentally hazardous. The synthesis of biodiesel sourced from vegetable oils is a renewable process and less hazardous to the environment. Therefore, we seek to understand the pyrolysis procedure at an atomic level in hopes of optimizing future fuel viability. Herein, I analyze methyl stearate (a component of biodiesel) using an in-house database of ab initio trajectories, each simulating 1.0 ps (with 1.0 fs resolution). These jobs were observed for significant bond-breaking/forming events, the type of fragments produced, and the exact position and time for each event. Statistical analysis …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Improving Biodiesel Through Pyrolysis: Direct Dynamics Investigations Into Thermal Decomposition Of Methyl Linoleate, Michael Bakker May 2020

Improving Biodiesel Through Pyrolysis: Direct Dynamics Investigations Into Thermal Decomposition Of Methyl Linoleate, Michael Bakker

MSU Graduate Theses

Dependence on petroleum and petrochemical products is unsustainable as it is both a finite resource and environmentally hazardous. Biodiesel is a proposed alternative, but has complications including possessing poor cold weather operability and lacking the ability to supplement other petrochemical products (e.g., ethylene, hexane, etc.) relied upon in society. Pyrolysis of biodiesel has demonstrated the formation of smaller hydrocarbons comprising many of these petrochemical products. Our aim is to computationally simulate the pyrolysis of methyl linoleate, the most prevalent component in biodiesel formed in the US (from soybean). We make use of unimolecular direct dynamics describing intramolecular processes, introducing Temperature …


Ab Initio Methyl Linoleate Bond Dissociation Energies: First Principles Fishing For Wise Crack Products, Zachary Ryan Wilson Aug 2017

Ab Initio Methyl Linoleate Bond Dissociation Energies: First Principles Fishing For Wise Crack Products, Zachary Ryan Wilson

MSU Graduate Theses

With the prices of petroleum reflecting demand for this finite resource, attention has been turned to alternative sources of energy. Biodiesel, defined as fatty acid methyl esters (FAMEs), exhibits many of the same properties as conventional diesel but is derived from biological sources. FAMEs are subsequently thermally cracked to form more light-weight petrochemical products. I aim to further understand the thermal cracking procedure, at an atomic-level, in hopes that this may aid in future engineering of viable fuels. I studied the effective computational modeling of bond disassociations in the FAME methyl linoleate. Bond dissociation in a 44-reaction database with known …


Dft Study On The Li Mobility In Li-Ion-Based Solid-State Electrolytes, Shafiqul Islam Jan 2017

Dft Study On The Li Mobility In Li-Ion-Based Solid-State Electrolytes, Shafiqul Islam

MSU Graduate Theses

I have investigated the diffusion mechanisms of Li-ion in amorphous lithium phosphite (LiPO3) with addition of sulphur. By applying the nudge elastic band (NEB) method in crystal LiPO3 and Li3PO4, I confirmed the easing of diffusion pathways for Li ion in LiPO3 which is consistent with the previous theoretical finding[1]. From the diffusion study in 0.5 Li2O- 0.5 P2O5 and 0.4 Li2SO4 – 0.6 (Li2O-P2O5) melts above 3000K performed with ab-initio molecular dynamics (AIMD), produces identical outcome as …


Modeling The 3-Dimensional Structure Of D(Cgcgaattcgcg) And Its 8-Oxo-Da5 Adduct With 1h Nmr Noesy Refinements, Christopher Miles Reynolds Dec 2016

Modeling The 3-Dimensional Structure Of D(Cgcgaattcgcg) And Its 8-Oxo-Da5 Adduct With 1h Nmr Noesy Refinements, Christopher Miles Reynolds

MSU Graduate Theses

Since the characterization of the oligomer d(CGCGAATTCGCG) has been published by Dickerson et al., computational studies have been carried out to produce an accurate 3D model. These models are important for visualizing how certain DNA repair enzymes, such as the glycosylases, recognize sites of damage by signatures of local 3D distortion. Using 1H NOESY-generated internuclear distances to replicate the model of this oligomer and a derivative with an 8-oxo-dA5 lesion, we propose characteristics of helical distortion that DNA glycosylases might use for identifying this form of damage. In addition, this method of comparison can be used to study the repair …