Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Entire DC Network

Ignition And Extinction Behavior Of Fuels In A Microcombustor, Pawan Sharma Jan 2019

Ignition And Extinction Behavior Of Fuels In A Microcombustor, Pawan Sharma

LSU Doctoral Dissertations

Conventional fuel testing device-CFR engine requires large quantities of fuels, which makes it unsuitable for research of small samples of fuels. This current study seeks to address this limitation by using an externally heated microcombustor as an alternative fuel testing device. Mainly three combustion behaviors have been observed inside a microcombustor: strong flames at higher flow rates, Flames with Repetitive Extinction and Ignition (FREI) at intermediate flow rates, and weak flames at marginal flow rates. In previous studies, weak combustion behavior has been proven suitable to study fuel properties from small samples of fuels. Microcombustor experiments typically rely on flame …


A Multi-Scale Approach For Modeling Shock Ignition And Burn Of Granular Hmx, Pratap Thamanna Rao Nov 2017

A Multi-Scale Approach For Modeling Shock Ignition And Burn Of Granular Hmx, Pratap Thamanna Rao

LSU Doctoral Dissertations

Deflagration-to-detonation transition (DDT) in confined, low-density granular HMX (65%-85% Theoretical Maximum Density, TMD) occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong burn-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting hot-spot formation within the micro-structure during pore collapse. In this study, meso-scale simulations of hot-spot formation in shock loaded granular HMX are used to guide the development of …


Tomographic Imaging Of Combustion Zones Using Tunable Diode Laser Absorption Spectroscopy (Tdlas), Avishek Guha Jan 2014

Tomographic Imaging Of Combustion Zones Using Tunable Diode Laser Absorption Spectroscopy (Tdlas), Avishek Guha

LSU Doctoral Dissertations

This work concentrates on enabling the usage of a specific variant of tunable diode laser absorption spectroscopy (abbr. TDLAS) for tomogaphically reconstructing spatially varying temperature and concentrations of gases with as few reconstruction artifacts as possible. The specific variant of TDLAS used here is known as wavelength modulation with second harmonic detection (abbr. WMS-2f) which uses the wavelength dependent absorbance information of two different spectroscopic transitions to determine temperature and concentration values. Traditionally, WMS-2f has generally been applied to domains where temperature although unknown, was spatially largely invariant while concentration was constant and known to a reasonable approximation (_x0006_+/- 10% …


Environmentally Persistent Free Radicals (Epfrs) In Pm₂.₅ : Their Contribution To Hydroxyl Radical Formation And Atmospheric Transformation, William Micheal Gehling, Jr. Jan 2013

Environmentally Persistent Free Radicals (Epfrs) In Pm₂.₅ : Their Contribution To Hydroxyl Radical Formation And Atmospheric Transformation, William Micheal Gehling, Jr.

LSU Doctoral Dissertations

Previous research demonstrated environmentally persistent free radicals (EPFRs) will form on particulate surfaces under combustion conditions (temperature range of 150-400 °C) from reactions of organic precursors with redox-active transition metals. With an understanding of how these EPFRs form, it is necessary to determine how they behave in a natural environment after emission. To better understand this, the nature of EPFRs in ambient PM2.5 under simulated atmospheric conditions was investigated. Ambient PM2.5 samples were collected at a roadside ambient monitoring site near heavy interstate traffic and major industrial activity. The EPFR concentration and general radical structure were determined with EPR spectroscopy. …


Energetic Nanoparticles As Fuel Additives For Enhanced Performance In Propulsion Systems, Srinibas Karmakar Jan 2012

Energetic Nanoparticles As Fuel Additives For Enhanced Performance In Propulsion Systems, Srinibas Karmakar

LSU Doctoral Dissertations

Biofuels are currently being explored as a carbon-neutral fuel alternative to petroleum-based fuels. However, biofuels such as ethanol has lower energy density (~27MJ/kg) relative to petroleum fuels (~ 45 MJ/kg). Adding high-energy density particles (such as boron with heating value of ~ 58.5 MJ/kg) to biofuels can generate fuel slurry with higher energy density than the base fuel, and represents a potential strategy toward making biofuels more viable. However, the combustion of boron is inhibited (specifically, the ignition is delayed) by the initial presence of an oxide layer, and its high evaporation and boiling temperatures. The present study investigates the …


Formation And Stabilization Of Combustion-Generated Environmentally Persistent Free Radicals On Transition Metal Oxides Supported On Silica, Eric Warren Pimentel Vejerano Jan 2011

Formation And Stabilization Of Combustion-Generated Environmentally Persistent Free Radicals On Transition Metal Oxides Supported On Silica, Eric Warren Pimentel Vejerano

LSU Doctoral Dissertations

The formation of environmentally persistent free radicals in combustion system was investigated from chemisorptions of chlorine- and hydroxy-substituted benzenes on transition metal oxide surface under post-combustion conditions. This manuscript reports the formation of EPFRs on silica particles containing 5% Fe(III)2O3, Ni(II)O, and Zn(II)O. The EPFRs are formed by the chemisorption of substituted aromatic molecular adsorbates on the metal cation center followed by electron transfer from the adsorbate to the metal ion at temperatures from 150 to 400 oC. Depending on the nature of the adsorbate and the temperature, two organic EPFRs were formed: a phenoxyl-type radical, which has a lower …


The Effects Of Inorganic Solids And Certain Gases On The Thermal Decomposition Of Catechol, Jerome Apilan Robles Jan 2009

The Effects Of Inorganic Solids And Certain Gases On The Thermal Decomposition Of Catechol, Jerome Apilan Robles

LSU Doctoral Dissertations

In order to investigate the effects of calcium carbonate and iron oxide on the thermal decomposition of solid fuels, we have constructed an isothermal flow reactor to perform experiments on the model compound catechol (ortho-dihydroxybenzene), a phenol-type compound representative of coal, wood and biomass. Calcium carbonate and iron oxide are inorganic components of coal and wood, which have demonstrated catalytic properties in thermal reactions and are commercially used to enhance the conversion of solid fuels. In this study, the effects of the inorganic solids on pyrolysis and combustion are conducted through identification and quantification of the products formed after subjecting …


Gas-Phase Formation Of Environmentally Persistent Free Radicals From Thermal Degradation Of Catechol, Hydroquinone, Phenols And Tobacco, Julien Gnonlonfoun Adounkpe Jan 2008

Gas-Phase Formation Of Environmentally Persistent Free Radicals From Thermal Degradation Of Catechol, Hydroquinone, Phenols And Tobacco, Julien Gnonlonfoun Adounkpe

LSU Doctoral Dissertations

Catechol, hydroquinone and Phenol are major constituents of the mainstream tobacco smoke. The toxicity of tobacco has been attributed to the ability of catechol and hydroquinone to undergo endogenous or exogenous redox cycling to form semiquinone type radicals responsible of Reactive Oxygen Species (ROS) formation. ROS such as hydroxyl radicals can cause severe oxidative stress on biological tissues and can provoke severe signaling pathways leading to cardiovascular and pulmonary dysfunctions and carcinogenesis. Given that semiquinone type radicals are organic radicals, characterized by their high instability and reactivity; it is somewhat surprising that they can live long enough mostly when associated …


Micro Injection Fuel/Air Premixer/Combustion, Jian Zhang Jan 2007

Micro Injection Fuel/Air Premixer/Combustion, Jian Zhang

LSU Doctoral Dissertations

Lean premixed (LP) combustion has become the dominant industrial approach to reduce NOx emissions. Homogeneous mixing of lean fuel and air mixtures prevents the presence of undesirable localized regions of near-stoichiometric fuel/air mixtures, thereby allowing a reduction in thermal NOx. A new concept, a multi-point micro injection premixer, is presented in this dissertation. The multi-point micro injection premixer is a porous plate that provides a simple but extremely effective method to mix air and fuel. An array of fuel jets is injected in a direction perpendicular to the plane of the premixer plate into an oncoming counterflow stream of air. …


Comparison Studies Of The Mechanistic Formation Of Polyhalogentaed Dibenzo-P-Dioxins And Furans From The Thermal Degradation Of 2-Bromophenol And 2-Chlorophenol, Catherine Spearing Evans Jan 2004

Comparison Studies Of The Mechanistic Formation Of Polyhalogentaed Dibenzo-P-Dioxins And Furans From The Thermal Degradation Of 2-Bromophenol And 2-Chlorophenol, Catherine Spearing Evans

LSU Doctoral Dissertations

Emissions of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and polybrominated dibenzo-p-dioxins and furans (PBDD/Fs) from hazardous waste incinerators, and many other sources for combustion have been considered environmentally hazardous and a major health threat. Recently, a growing number of materials containing brominated hydrocarbons, commonly used flame retardants, have been disposed in municipal and hazardous waste incinerators. This results in the increased potential for formation of PBDD/Fs and other hazardous combustion by-products. In contrast to chlorinated hydrocarbons, the reactions of brominated hydrocarbons have been studied only minimally. In fact, studies have shown that brominated phenols form higher yields of PBDD/Fs than the …


Rotary Kiln Incineration Of Hazardous Wastes: Pilot-Scale Studies At Louisiana State University, John Sutherland Earle Jan 2003

Rotary Kiln Incineration Of Hazardous Wastes: Pilot-Scale Studies At Louisiana State University, John Sutherland Earle

LSU Doctoral Dissertations

Studies of incineration of surrogates for hazardous wastes are conducted in the pilot-scale rotary kiln incinerator (RKI) at Louisiana State University (LSU) in Baton Rouge, Louisiana. The purpose of the research is to investigate methods of treating and destroying hazardous wastes in a cost-effective and environmentally sound way. The objective is to provide process data that will contribute to increased knowledge for RKI design and operation. The LSU facility is a College of Engineering Combustion Laboratory that is unique in its large size as a university laboratory. It is equipped with individual instruments for analysis of O2, CO, …