Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 62

Full-Text Articles in Entire DC Network

Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha Feb 2023

Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha

Faculty Publications

The rapidly increasing number of drones in the national airspace, including those for recreational and commercial applications, has raised concerns regarding misuse. Autonomous drone detection systems offer a probable solution to overcoming the issue of potential drone misuse, such as drug smuggling, violating people’s privacy, etc. Detecting drones can be difficult, due to similar objects in the sky, such as airplanes and birds. In addition, automated drone detection systems need to be trained with ample amounts of data to provide high accuracy. Real-time detection is also necessary, but this requires highly configured devices such as a graphical processing unit (GPU). …


Uav Rapidly-Deployable Stage Sensor With Electro-Permanent Magnet Docking Mechanism For Flood Monitoring In Undersampled Watersheds, Corinne A, Smith, Joud Satme, Jacob Martin, Austin Downey, Nikolaos Vitzilaios, Jasim Imran Oct 2022

Uav Rapidly-Deployable Stage Sensor With Electro-Permanent Magnet Docking Mechanism For Flood Monitoring In Undersampled Watersheds, Corinne A, Smith, Joud Satme, Jacob Martin, Austin Downey, Nikolaos Vitzilaios, Jasim Imran

Faculty Publications

The availability of historical flood data is vital in recognizing weather-related trends and outlining necessary precautions for at-risk communities. Flood frequency, magnitude, endurance, and volume are traditionally recorded using established streamgages; however, the material and installation costs allow only a few streamgages in a region, which yield a narrow data selection. In particular, stage, the vertical water height in a water body, is an important parameter in determining flood trends. This work investigates a low-cost, compact, rapidly-deployable alternative to traditional stage sensors that will allow for denser sampling within a watershed and a more detailed record of flood events. The …


Nonlinear Trajectory Tracking Control For Winged Evtol Uavs, Jacob Willis, Randal W. Beard Mar 2021

Nonlinear Trajectory Tracking Control For Winged Evtol Uavs, Jacob Willis, Randal W. Beard

Faculty Publications

Current control methods for winged eVTOL UAVs consider the vehicle primarily as a fixed-wing aircraft with the addition of vertical thrust used only during takeoff and landing. These methods provide good long-range flight handling but fail to consider the full dynamics of the vehicle for tracking complex trajectories. We present a trajectory tracking controller for the full dynamics of a winged eVTOL UAV in hover, fixed-wing, and partially transitioned flight scenarios. We show that in low- to moderate-speed flight, trajectory tracking can be achieved using a variety of pitch angles. In these conditions, the pitch of the vehicle is a …


Evaluating The Potential Of Drone Swarms In Nonverbal Hri Communication, Kasper Grispino, Damian Lyons, Truong-Huy Nguyen Sep 2020

Evaluating The Potential Of Drone Swarms In Nonverbal Hri Communication, Kasper Grispino, Damian Lyons, Truong-Huy Nguyen

Faculty Publications

Human-to-human communications are enriched with affects and emotions, conveyed, and perceived through both verbal and nonverbal communication. It is our thesis that drone swarms can be used to communicate information enriched with effects via nonverbal channels: guiding, generally interacting with, or warning a human audience via their pattern of motions or behavior. And furthermore that this approach has unique advantages such as flexibility and mobility over other forms of user interface. In this paper, we present a user study to understand how human participants perceived and interpreted swarm behaviors of micro-drone Crazyflie quadcopters flying three different flight formations to bridge …


Pitch And Thrust Allocation For Full-Flight-Regime Control Of Winged Evtol Uavs, Jacob B. Willis, Randal W. Beard Apr 2020

Pitch And Thrust Allocation For Full-Flight-Regime Control Of Winged Evtol Uavs, Jacob B. Willis, Randal W. Beard

Faculty Publications

Trajectory tracking control for winged eVTOL aircraft is complicated by the high-angle-of-attack aerodynamics experienced during navigational flight occurring immediately after takeoff and immediately before landing. The total energy use of the vehicle can be reduced and the control performance can be improved by appropriately considering the pitch angle of the vehicle in varying flight conditions. We present a review of high-angle-of-attack aerodynamic models as well as an algorithm for finding the optimal pitch and thrust of a winged eVTOL throughout its flight regime. We show simulation results demonstrating a 75% reduction in tracking error over our previous work while maintaining …


The Effect Of Communication And Vehicle Properties On The Search Performance Of A Swarm Of Unmanned Aerial Vehicles, Jenna E. Newcomb, Andrew Ning Jan 2019

The Effect Of Communication And Vehicle Properties On The Search Performance Of A Swarm Of Unmanned Aerial Vehicles, Jenna E. Newcomb, Andrew Ning

Faculty Publications

An unmanned aerial vehicle (UAV) swarm allows for a more time-efficient method of searching a specified area than a single UAV or piloted plane. There are a variety of factors that affect how well an area is surveyed. We specifically analyzed the effect both vehicle properties and communication had on the swarm search performance. We used non-dimensionalization to examine the effect vehicle properties had on search performance so the results can be applied to any domain size with any number and type of vehicle. We found that even if vehicles could only sense 10% of the grid area at any …


First Approach To Coupling Of Numerical Lifting-Line Theory And Linear Covariance Analysis For Uav State Uncertainty Propagation, Cory D. Goates, Randall S. Christensen, Robert C. Leishman Jan 2019

First Approach To Coupling Of Numerical Lifting-Line Theory And Linear Covariance Analysis For Uav State Uncertainty Propagation, Cory D. Goates, Randall S. Christensen, Robert C. Leishman

Faculty Publications

Numerical lifting-line is a computationally efficient method for calculating aerodynamic forces and moments on aircraft. However, its potential has yet to be tapped for use in guidance, navigation, and control (GN&C). Linear covariance analysis is becoming a popular GN&C design tool and shows promise for pairing with numerical lifting-line. Pairing numerical lifting-line with linear covariance analysis allows for forward propagation of state uncertainty for real-time decision making. We demonstrate this for select state variables in a drone aerial recapture situation. Linear covariance analysis uses finite difference derivatives obtained from numerical lifting-line to calculate force and moment variances. These show agreement …


Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman Jan 2019

Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman

Faculty Publications

A key enabler of autonomous vehicles is the ability to plan the path of the vehicle to accomplish mission objectives. To be robust to realistic environments, path planners must account for uncertainty in the trajectory of the vehicle as well as uncertainty in the location of obstacles. The uncertainty in the trajectory of the vehicle is a difficult quantity to estimate, and is influenced by coupling between the vehicle dynamics, guidance, navigation, and control system as well as any disturbances acting on the vehicle. Monte Carlo analysis is the conventional approach to determine vehicle dispersion, while accounting for the coupled …


Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Ronald Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren Nov 2018

Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Ronald Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren

Faculty Publications

This paper demonstrates the use of nonlinear dynamic optimization to calculate energy optimal trajectories for a high-altitude, solar-powered Unmanned Aerial Vehicle (UAV). The objective is to maximize the total energy in the system while staying within a 3 km mission radius and meeting other system constraints. Solar energy capture is modeled using the vehicle orientation and solar position, and energy is stored both in batteries and in potential energy through elevation gain. Energy capture is maximized by optimally adjusting the angle of the aircraft surface relative to the sun. The UAV flight and energy system dynamics are optimized over a …


Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren Nov 2018

Dynamic Optimization Of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints, Abraham Martin, Nathaniel Gates, Andrew Ning, John Hedengren

Faculty Publications

This paper demonstrates the use of nonlinear dynamic optimization to calculate energy- optimal trajectories for a high-altitude, solar-powered Unmanned Aerial Vehicle (UAV). The objective is to maximize the total energy in the system while staying within a 3 km mission radius and meeting other system constraints. Solar energy capture is modeled using the vehicle orientation and solar position, and energy is stored both in batteries and in potential energy through elevation gain. Energy capture is maximized by optimally adjusting the angle of the aircraft surface relative to the sun. The UAV flight and energy system dynamics are optimized over a …


Range Information Characterization Of The Hokuyo Ust-20lx Lidar Sensor, Matthew A. Cooper, John F. Raquet, Rick Patton May 2018

Range Information Characterization Of The Hokuyo Ust-20lx Lidar Sensor, Matthew A. Cooper, John F. Raquet, Rick Patton

Faculty Publications

This paper presents a study on the data measurements that the Hokuyo UST-20LX Laser Rangefinder produces, which compiles into an overall characterization of the LiDAR sensor relative to indoor environments. The range measurements, beam divergence, angular resolution, error effect due to some common painted and wooden surfaces, and the error due to target surface orientation are analyzed. It was shown that using a statistical average of sensor measurements provides a more accurate range measurement. It was also shown that the major source of errors for the Hokuyo UST-20LX sensor was caused by something that will be referred to as “mixed …


Aerial Imaging Using Uavs (Drones) In Chihuahua And Nayarit, Mexico, To Map And Archive Archaeological Sites, Michael T. Searcy, Scott Ure, Michael Mathiowetz, Haylie Ferguson, Jaclyn Eckersley, Mauricio Garduno Ambriz, Jose Carlos Beltran Medina, Jorge Morales Monroy Jan 2018

Aerial Imaging Using Uavs (Drones) In Chihuahua And Nayarit, Mexico, To Map And Archive Archaeological Sites, Michael T. Searcy, Scott Ure, Michael Mathiowetz, Haylie Ferguson, Jaclyn Eckersley, Mauricio Garduno Ambriz, Jose Carlos Beltran Medina, Jorge Morales Monroy

Faculty Publications

In 2017, we used UAVs (drones) to record eight archaeological sites from the air. As this type of technology becomes more refined, we have found that it is especially useful in carrying out three specific tasks: contour mapping, archiving site conditions, and identifying architecture. This paper reports our findings resulting from aerial images captured while flying archaeological sites in Nayarit and Chihuahua, Mexico.


Deep Visual Gravity Vector Detection For Unmanned Aircraft Attitude Estimation, Gary J. Ellingson, David Wingate, Tim Mclain Sep 2017

Deep Visual Gravity Vector Detection For Unmanned Aircraft Attitude Estimation, Gary J. Ellingson, David Wingate, Tim Mclain

Faculty Publications

This paper demonstrates a feasible method for using a deep neural network as a sensor to estimate the attitude of a flying vehicle using only flight video. A dataset of still images and associated gravity vectors was collected and used to perform supervised learning. The network builds on a previously trained network and was trained to be able to approximate the attitude of the camera with an average error of about 8 degrees. Flight test video was recorded and processed with a relatively simple visual odometry method. The aircraft attitude is then estimated with the visual odometry as the state …


Potential Benefits Of Combining Anomaly Detection With View Planning For Uav Infrastructure Modeling, R. Abraham Martin, Landen Blackburn, Joshua Pulsipher, Kevin W. Franke, John Hedengren May 2017

Potential Benefits Of Combining Anomaly Detection With View Planning For Uav Infrastructure Modeling, R. Abraham Martin, Landen Blackburn, Joshua Pulsipher, Kevin W. Franke, John Hedengren

Faculty Publications

This paper presents a novel method for UAV-based 3D modeling of large infrastructure objects, such as pipelines, canals and levees, that combines anomaly detection with automatic on-board 3D view planning. The study begins by assuming that anomaly detections are possible and focuses on quantifying the potential benefits of the combined method and the view planning algorithm. A simulated canal environment is constructed, and several simulated anomalies are created and marked. The algorithm is used to plan inspection flights for the anomaly locations, and simulated images from the flights are rendered and processed to construct 3D models of the locations of …


Evolutionary View Planning For Optimized Uav Terrain Modeling In A Simulated Environment, Ronald A. Martin, Ivan Rojas, Kevin W. Franke, John Hedengren Dec 2016

Evolutionary View Planning For Optimized Uav Terrain Modeling In A Simulated Environment, Ronald A. Martin, Ivan Rojas, Kevin W. Franke, John Hedengren

Faculty Publications

This work demonstrates the use of genetic algorithms in optimized view planning for 3D reconstruction applications using small unmanned aerial vehicles (UAVs). The quality of UAV site models is currently highly dependent on manual pilot operations or grid-based automation solutions. When applied to 3D structures, these approaches can result in gaps in the total coverage or inconsistency in final model resolution. Genetic algorithms can effectively explore the search space to locate image positions that produce high quality models in terms of coverage and accuracy. A fitness function is defined, and optimization parameters are selected through semi-exhaustive search. A novel simulation …


A Hybrid Optimization Technique Applied To The Intermediate-Target Optimal Control Problem, Clay J. Humphreys, Richard G. Cobb, David R. Jacques, Jonah A. Reeger Aug 2016

A Hybrid Optimization Technique Applied To The Intermediate-Target Optimal Control Problem, Clay J. Humphreys, Richard G. Cobb, David R. Jacques, Jonah A. Reeger

Faculty Publications

The DoD has introduced the concept of Manned-Unmanned Teaming, a subset of which is the loyal wingman. Optimal control techniques have been proposed as a method for rapidly solving the intermediate-target (mid-point constraint) optimal control problem. Initial results using direct orthogonal collocation and a gradient-based method for solving the resulting nonlinear program reveals a tendency to converge to or to get `stuck’ in locally optimal solutions. The literature suggested a hybrid technique in which a particle swarm optimization is used to quickly find a neighborhood of a more globally minimal solution, at which point the algorithm switches to a gradient-based …


Comparison Of Sfm Computer Vision Point Clouds Of A Landslide Derived From Multiple Small Uav Platforms And Sensors To A Tls Based Model, Samantha Ruggles, Joseph Clark, Kevin W. Franke, Derek Wolfe, Brandon Reimschiissel, Ronald Abraham Martin, Trent Okeson, John Hedengren Jul 2016

Comparison Of Sfm Computer Vision Point Clouds Of A Landslide Derived From Multiple Small Uav Platforms And Sensors To A Tls Based Model, Samantha Ruggles, Joseph Clark, Kevin W. Franke, Derek Wolfe, Brandon Reimschiissel, Ronald Abraham Martin, Trent Okeson, John Hedengren

Faculty Publications

Structure from motion (SfM) computer vision is a remote sensing method that is gaining popularity due to its simplicity and ability to accurately characterize site geometry in three dimensions (3D). While many researchers have demonstrated the potential for SfM to be used with unmanned aerial vehicles (UAVs) to model in three dimensions various geologic features such as landslides, little is understood how the selection of the UAV platform can affect the resolution and accuracy of the model. This study evaluates the resolution and accuracy of 3D point cloud models of a large landslide that occurred in 2013 near Page, Arizona …


Rosflight: A Lightweight, Inexpensive Mav Research And Development Tool, Timothy Mclain, James Jackson, Gary J. Ellingson Jun 2016

Rosflight: A Lightweight, Inexpensive Mav Research And Development Tool, Timothy Mclain, James Jackson, Gary J. Ellingson

Faculty Publications

To accelerate research and development of the autonomous capabilities of micro aerial vehicles we have developed flight control framework, ROSflight, as a research tool. ROSflight makes development of autopilot code easier and more efficient by minimizing the use of embedded systems, incorporating the Robot Operating System and using off-the-shelf and open-source hardware and software. Motivation and applications for use in the research community are discussed. Analysis of loop rate and communication bandwidth are presented as well as results from flight demonstration of two multi-rotor aircraft.


The Application And Accuracy Of Structure From Motion Computer Vision Models With Full-Scale Geotechnical Field Tests, L. Palmer, Kevin W. Franke, R. Abraham Martin, B. E. Sines, Kyle M. Rollins, John Hedengren Jan 2015

The Application And Accuracy Of Structure From Motion Computer Vision Models With Full-Scale Geotechnical Field Tests, L. Palmer, Kevin W. Franke, R. Abraham Martin, B. E. Sines, Kyle M. Rollins, John Hedengren

Faculty Publications

Structure from motion (SfM) computer vision is a relatively new technology that allows engineers to reconstruct a three-dimensional (3D) model of a given scene using twodimensional digital photographs captured from a single, moving camera. SfM computer vision provides an economic and user-friendly alternative to other 3D scene-capture and modeling tools such as light distance and ranging (LiDAR). Although the resolution and accuracy of laser-based modeling methods are generally superior to vision-based modeling methods, the economic advantages associated with the latter may make it a useful and practical alternative for many geotechnical engineering applications. Although other engineering disciplines have investigated the …


Navigating The Faa’S Turbulent Airspace In The United States Regarding Uavs, Michael T. Searcy Jan 2015

Navigating The Faa’S Turbulent Airspace In The United States Regarding Uavs, Michael T. Searcy

Faculty Publications

There has been a significant increase in the use of UAVs throughout the world to aid in archaeological investigations. Unfortunately the current U.S. Federal Aviation Administration has enforced strict policies that prohibit most institutions and private firms to use these aerial vehicles. As a result archaeologists in the United States are falling behind in implementing an important tool in archaeological reconnaissance. This paper outlines the progress made thus far by the FAA to reform these regulations.


Non-Redundant Sensor Fault Detection Using An Improved Dynamic Model, Brandon Cannon, Robert C. Leishman, Timothy W. Mclain, Joseph Jackson, Jovan Boskovic Aug 2013

Non-Redundant Sensor Fault Detection Using An Improved Dynamic Model, Brandon Cannon, Robert C. Leishman, Timothy W. Mclain, Joseph Jackson, Jovan Boskovic

Faculty Publications

This paper proposes a method of detecting faults in non-redundant sensors. Such a method is advantageous for small unmanned aerial vehicles (UAVs), which are prevented from carrying redundant sensors due to size, weight, and power constraints. The method we propose uses a multiplicative extended Kalman lter (MEKF) for estimation and employs hypothesis testing to detect faults. This method has been shown to detect bias, drift, and increased noise in a non-redundant sensor real-time on board an autonomous rotorcraft.


Robust Motion Estimation With Rgb-D Cameras, Robert C. Leishman, Daniel Koch, Timothy W. Mclain Aug 2013

Robust Motion Estimation With Rgb-D Cameras, Robert C. Leishman, Daniel Koch, Timothy W. Mclain

Faculty Publications

Estimating vehicle motion using vision sensors in real time has been greatly explored in the past few years due to speed improvements and advances in computer hardware. Six degree of freedom motion estimation using vision information is desirable due to a vision sensors low cost, low power requirements and light weight and for the quality of the solutions that can be obtained using few assumptions about the environment. However, cameras have the downside of not providing good estimates when visual features are sparse or not available. Also, there are problems with changes in lighting and when light is low or …


Energy Harvesting And Mission Effectiveness For Small Unmanned Air Vehicles, Mark J. Cutler, Timothy W. Mclain, Randal W. Beard, Brian Capozzi Aug 2010

Energy Harvesting And Mission Effectiveness For Small Unmanned Air Vehicles, Mark J. Cutler, Timothy W. Mclain, Randal W. Beard, Brian Capozzi

Faculty Publications

This paper explores the feasibility of improving unmanned air vehicle (UAV) mission effectiveness by extracting energy from the atmosphere. Specifically, we consider an aerial surveillance mission in the vicinity of a geographic ridge. Cross winds owing over the ridge produce regions of lift on the windward side that can be exploited to increase mission duration. Mission effectiveness is quantified using the seeability metric. Simulation results are presented for several observation target placements. Results indicate that seeability and imaging persistence can be improved by exploiting ridge lift. Simulations demonstrated that targets at ranges less than four times the ridge height were …


Supporting Wilderness Search And Rescue With Integrated Intelligence: Autonomy And Information At The Right Time And The Right Place, Michael A. Goodrich, Lanny Lin, Bryan S. Morse, Michael Roscheck Jul 2010

Supporting Wilderness Search And Rescue With Integrated Intelligence: Autonomy And Information At The Right Time And The Right Place, Michael A. Goodrich, Lanny Lin, Bryan S. Morse, Michael Roscheck

Faculty Publications

Current practice in Wilderness Search and Rescue (WiSAR) is analogous to an intelligent system designed to gather and analyze information to find missing persons in remote areas. The system consists of multiple parts — various tools for information management (maps, GPS, etc) distributed across personnel with different skills and responsibilities. Introducing a camera-equipped mini-UAV into this task requires autonomy and information technology that itself is an integrated intelligent system to be used by a sub-team that must be integrated into the overall intelligent system. In this paper, we identify key elements of the integration challenges along two dimensions: (a) attributes …


Performance Flight Testing Of Small Electric Powered Unmanned Aerial Vehicles, Jon N. Ostler, W. Jerry Bowman, Deryl O. Snyder, Timothy W. Mclain Sep 2009

Performance Flight Testing Of Small Electric Powered Unmanned Aerial Vehicles, Jon N. Ostler, W. Jerry Bowman, Deryl O. Snyder, Timothy W. Mclain

Faculty Publications

Flight testing methods are developed to find the drag polar for small unmanned aerial vehicles powered by electric motors with fixed-pitch propellers. Wind tunnel testing was used to characterize the propeller-motor efficiency. The drag polar was constructed using data from flight tests. This drag polar was then used to find the following performance parameters: maximum velocity, minimum velocity, velocity for maximum range, velocity for maximum endurance, maximum rate of climb, maximum climb angle, minimum turn radius, maximum turn rate, and maximum bank angle. The developed flight testing methods are used to characterize the performance of a small UAV.


Dynamics And Control Of Cable-Drogue System In Aerial Recovery Of Micro Air Vehicles Based On Gauss's Principle, Liang Sun, Randal W. Beard, Mark B. Colton, Timothy W. Mclain Jun 2009

Dynamics And Control Of Cable-Drogue System In Aerial Recovery Of Micro Air Vehicles Based On Gauss's Principle, Liang Sun, Randal W. Beard, Mark B. Colton, Timothy W. Mclain

Faculty Publications

This paper presents a new concept for aerial recovery of Micro Air Vehicles (ARMAVs) using a large mothership and a recovery drogue. The mothership drags a drogue attached to a cable and the drogue is controlled to match the flight patten of the MAV. This paper uses Gauss’s Principle to derive the dynamic model of the cable-drogue systems. A controllable drogue plays a key role in recovering MAVs in windy conditions. We develop a control approach for the drogue using its drag coefficient. Simulation results based on multilink cable-drogue systems present the feasibility of the aerial recovery concept and the …


Payload Directed Flight Of Miniature Air Vehicles, Randal W. Beard, Clark Taylor, Jeff Saunders, Ryan Holt, Timothy W. Mclain Apr 2009

Payload Directed Flight Of Miniature Air Vehicles, Randal W. Beard, Clark Taylor, Jeff Saunders, Ryan Holt, Timothy W. Mclain

Faculty Publications

This paper describes three applications of payload directed flight using miniature air vehicles: vision-based road following, vision-based target tracking, and vision-based mapping. A general overview of each application is given, followed by simulation and flight-test results. Results demonstrate the viability of utilizing electo-optical video imagery to directly control the air vehicle flight path to enhance performance relative to the sensing objective.


Decentralized Perimeter Surveillance Using A Team Of Uavs, Randal Beard, David Casbeer, Derek Kingston Dec 2008

Decentralized Perimeter Surveillance Using A Team Of Uavs, Randal Beard, David Casbeer, Derek Kingston

Faculty Publications

Sponsorship: NASA, AFOSR. This paper develops a distributed algorithm to maintain a current estimate of the state of the perimeter using a team of UAVs. Using notions of consensus, an algorithm is developed and shown to distribute a UAV team uniformly around the perimeter.


Aerobatic Maneuvering Of Miniature Air Vehicles Using Attitude Trajectories, James K. Hall, Timothy W. Mclain Aug 2008

Aerobatic Maneuvering Of Miniature Air Vehicles Using Attitude Trajectories, James K. Hall, Timothy W. Mclain

Faculty Publications

We develop aerobatic maneuvering for miniature air vehicles (MAVs) using time-parameterized attitude trajectory generation and an associated attitude tracking control law. We develop two methodologies, polynomial or trigonometric, for creating smooth functions that specify pitch and roll angle trajectories. For both approaches, the functions are constrained by the maneuver boundary conditions for aircraft position and velocity. We develop a feedback control law to regulate aircraft orientation throughout the maneuvers. The performance of our trajectory generation algorithm and our attitude tracking control law is demonstrated through simulated and actual flight tests of aerobatic maneuvers.


Pid Parameter Optimization Of An Uav Longitudinal Flight Control System, Kamran Turkoglu, Ugur Ozdemir, Melike Nikbay, Elbrous Jafarov Jan 2008

Pid Parameter Optimization Of An Uav Longitudinal Flight Control System, Kamran Turkoglu, Ugur Ozdemir, Melike Nikbay, Elbrous Jafarov

Faculty Publications

In this paper, an automatic control system design based on Integral Squared Error (ISE) parameter optimization technique has been implemented on longitudinal flight dynamics of an UAV. It has been aimed to minimize the error function between the reference signal and the output of the plant. In the following parts, objective function has been defined with respect to error dynamics. An unconstrained optimization problem has been solved analytically by using necessary and sufficient conditions of optimality, optimum PID parameters have been obtained and implemented in control system dynamics.