Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Australian Institute for Innovative Materials - Papers

2014

Development

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Bioactive Coatings For Orthopaedic Implants-Recent Trends In Development Of Implant Coatings, Bill G. X Zhang, Damian E. Myers, Gordon G. Wallace, Milan Brandt, Peter F. M Choong Jan 2014

Bioactive Coatings For Orthopaedic Implants-Recent Trends In Development Of Implant Coatings, Bill G. X Zhang, Damian E. Myers, Gordon G. Wallace, Milan Brandt, Peter F. M Choong

Australian Institute for Innovative Materials - Papers

Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to …


Polarization Alignment, Phase Transition, And Piezoelectricity Development In Polycrystalline 0.5ba(Zr0.2 Ti0.8)O3-0.5(Ba0.7 Ca0.3)Tio3, Hanzheng Guo, Brian K. Voas, Shujun Zhang, Chao Zhou, Xiaobing Ren, Scott P. Beckman, Xiaoli Tan Jan 2014

Polarization Alignment, Phase Transition, And Piezoelectricity Development In Polycrystalline 0.5ba(Zr0.2 Ti0.8)O3-0.5(Ba0.7 Ca0.3)Tio3, Hanzheng Guo, Brian K. Voas, Shujun Zhang, Chao Zhou, Xiaobing Ren, Scott P. Beckman, Xiaoli Tan

Australian Institute for Innovative Materials - Papers

The microstructural origin of the exceptionally high piezoelectric response of polycrystalline 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 is investigated using in situ transmission electron microscopy, in addition to a wide variety of bulk measurements and first-principles calculations. A direct correlation is established relating a domain wall-free state to the ultrahigh piezoelectric d33 coefficient in this BaTiO3-based composition. The results suggest that the unique single-domain state formed during electrical poling is a result of a structural transition from coexistent rhombohedral and tetragonal phases to an orthorhombic phase that has an anomalously low elastic modulus. First-principles calculations indicate that incorporating Ca2+ and Zr4+ into BaTiO3 reduces the …