Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

University of South Carolina

2019

Polyethylene-reflected plutonium sphere

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: I. Effects Of Imprecisely Known Microscopic Total And Capture Cross Sections, Daniel Gabriel Cacuci, Ruixian Fang, Jeffrey A. Favorite Nov 2019

Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: I. Effects Of Imprecisely Known Microscopic Total And Capture Cross Sections, Daniel Gabriel Cacuci, Ruixian Fang, Jeffrey A. Favorite

Faculty Publications

The subcritical polyethylene-reflected plutonium (PERP) metal fundamental physics benchmark, which is included in the Nuclear Energy Agency (NEA) International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook, has been selected to serve as a paradigm illustrative reactor physics system for the application of the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) that was developed by Cacuci. The 2nd-ASAM enables the exhaustive deterministic computation of the exact values of the 1st-order and 2nd-order sensitivities of a system response to the parameters underlying the respective system. The PERP benchmark is numerically modeled in this work by using the deterministic multigroup neutron transport equation discretized …


Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: Ii. Effects Of Imprecisely Known Microscopic Scattering Cross Sections, Daniel Gabriel Cacuci, Ruixian Fang Oct 2019

Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: Ii. Effects Of Imprecisely Known Microscopic Scattering Cross Sections, Daniel Gabriel Cacuci, Ruixian Fang

Faculty Publications

This work continues the presentation commenced in Part I of the second-order sensitivity analysis of nuclear data of a polyethylene-reflected plutonium (PERP) benchmark using the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM). This work reports the results of the computations of the first- and second-order sensitivities of this benchmark's computed leakage response with respect to the benchmark's 21,600 parameters underlying the computed group-averaged isotopic scattering cross sections. The numerical results obtained for the 21,600 first-order relative sensitivities indicate that the majority of these were small, the largest having relative values of O (10(-2)). Furthermore, the vast majority of the (21600)(2) second-order …


Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: Iii. Effects Of Imprecisely Known Microscopic Fission Cross Sections And Average Number Of Neutrons Per Fission, Dan Gaberiel Cacuci, Ruixian Fang, J. A. Favorite, M. C. Badea, F. Di Rocco Oct 2019

Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: Iii. Effects Of Imprecisely Known Microscopic Fission Cross Sections And Average Number Of Neutrons Per Fission, Dan Gaberiel Cacuci, Ruixian Fang, J. A. Favorite, M. C. Badea, F. Di Rocco

Faculty Publications

The Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) is applied to compute the first-order and second-order sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental system with respect to the following nuclear data: Group-averaged isotopic microscopic fission cross sections, mixed fission/total, fission/scattering cross sections, average number of neutrons per fission (), mixed /total cross sections, /scattering cross sections, and /fission cross sections. The numerical results obtained indicate that the 1st-order relative sensitivities for these nuclear data are smaller than the 1st-order sensitivities of the PERP leakage response with respect to the total cross sections but are larger than those …