Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

University of South Carolina

Faculty Publications

Series

2019

Machine learning

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Machine Learning To Quantitate Neutrophil Netosis, Laila Elsherif, Noah Sciaky, Carrington A. Metts, Md. Modasshir, Ioannis Rekleitis, Christine A. Burris, Joshua A. Walker, Nadeem Ramadan, Tina M. Leisner, Stephen P. Holly, Martis W. Cowles, Kenneth I. Ataga, Joshua N. Cooper, Leslie V. Parise Nov 2019

Machine Learning To Quantitate Neutrophil Netosis, Laila Elsherif, Noah Sciaky, Carrington A. Metts, Md. Modasshir, Ioannis Rekleitis, Christine A. Burris, Joshua A. Walker, Nadeem Ramadan, Tina M. Leisner, Stephen P. Holly, Martis W. Cowles, Kenneth I. Ataga, Joshua N. Cooper, Leslie V. Parise

Faculty Publications

We introduce machine learning (ML) to perform classifcation and quantitation of images of nuclei from human blood neutrophils. Here we assessed the use of convolutional neural networks (CNNs) using free, open source software to accurately quantitate neutrophil NETosis, a recently discovered process involved in multiple human diseases. CNNs achieved >94% in performance accuracy in diferentiating NETotic from non-NETotic cells and vastly facilitated dose-response analysis and screening of the NETotic response in neutrophils from patients. Using only features learned from nuclear morphology, CNNs can distinguish between NETosis and necrosis and between distinct NETosis signaling pathways, making them a precise tool for …


Intelligent Machine Learning: Tailor-Making Macromolecules, Yousef Mohammadi, Mohammad Reza Saeb, Alexander Penlidis, Esmaiel Jabbari, Florian J. Stadler, Philippe Zinck, Krzysztof Matyjaszewski Apr 2019

Intelligent Machine Learning: Tailor-Making Macromolecules, Yousef Mohammadi, Mohammad Reza Saeb, Alexander Penlidis, Esmaiel Jabbari, Florian J. Stadler, Philippe Zinck, Krzysztof Matyjaszewski

Faculty Publications

Nowadays, polymer reaction engineers seek robust and effective tools to synthesize complex macromolecules with well-defined and desirable microstructural and architectural characteristics. Over the past few decades, several promising approaches, such as controlled living (co)polymerization systems and chain-shuttling reactions have been proposed and widely applied to synthesize rather complex macromolecules with controlled monomer sequences. Despite the unique potential of the newly developed techniques, tailor-making the microstructure of macromolecules by suggesting the most appropriate polymerization recipe still remains a very challenging task. In the current work, two versatile and powerful tools capable of effectively addressing the aforementioned questions have been proposed and …


Intelligent Machine Learning: Tailor-Making Macromolecules, Yousef Mohammadi, Mohammad Reza Saeb, Alexander Penlidis, Esmaiel Jabbari, Florian J. Stadler, Philippe Zinck, Krzysztof Matyjaszewski Apr 2019

Intelligent Machine Learning: Tailor-Making Macromolecules, Yousef Mohammadi, Mohammad Reza Saeb, Alexander Penlidis, Esmaiel Jabbari, Florian J. Stadler, Philippe Zinck, Krzysztof Matyjaszewski

Faculty Publications

Nowadays, polymer reaction engineers seek robust and effective tools to synthesize complex macromolecules with well-defined and desirable microstructural and architectural characteristics. Over the past few decades, several promising approaches, such as controlled living (co)polymerization systems and chain-shuttling reactions have been proposed and widely applied to synthesize rather complex macromolecules with controlled monomer sequences. Despite the unique potential of the newly developed techniques, tailor-making the microstructure of macromolecules by suggesting the most appropriate polymerization recipe still remains a very challenging task. In the current work, two versatile and powerful tools capable of effectively addressing the aforementioned questions have been proposed and …