Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Entire DC Network

Investigation Of Membrane Protein Dynamics Using Correlative Single-Particle Tracking And Super-Resolution Microscopy Combined With Bayesian Inference Of Diusion In Arbitrary Landscapes, Hanieh Mazloom Farsibaf Dec 2019

Investigation Of Membrane Protein Dynamics Using Correlative Single-Particle Tracking And Super-Resolution Microscopy Combined With Bayesian Inference Of Diusion In Arbitrary Landscapes, Hanieh Mazloom Farsibaf

Physics & Astronomy ETDs

Many experiments have shown that the diffusive motion of lipids and membrane proteins are slower on the cell surface than those in artificial lipid bilayers or blebs. One hypothesis that may partially explain this mystery is the effect of the cytoskeleton structures on the protein dynamics. To test this hypothesis, we designed a high-speed single particle tracking microscope and use a hybrid tracking and super-resolution approach on the same cell. We labeled the high-affinity FceRI receptor as a transmembrane protein and GPI-anchored proteins as an example of outer leaflet protein in Rat Basophilic Leukemia (RBL) cells and tracked these membrane …


Direct Observation Of Atomic Exchange During Surface Self-Diffusion, Matthew Aaron Koppa Dec 2019

Direct Observation Of Atomic Exchange During Surface Self-Diffusion, Matthew Aaron Koppa

Physics & Astronomy ETDs

The diffusion of adatoms across the (100) plane of iridium has been previously inferred to occur by an exchange mechanism based on site mapping. This study provides the first direct observation that surface self-diffusion can occur by exchange. Iridium enriched to ≥93% 191Ir was deposited onto an atomically clean and smooth Ir(100) plane as observed in an atom probe field ion microscope. Following thermally activated surface self-diffusion the adatom was field desorbed and mass analyzed. Observation of the 193Ir isotope in one-half of the cases demonstrates conclusively that atomic exchange can occur during surface self-diffusion.


Dark Matter Production Beyond The Thermal Wimp Paradigm: An Exploration Of Early Matter Domination Scenarios, Jacek Ksawery Osinski Dec 2019

Dark Matter Production Beyond The Thermal Wimp Paradigm: An Exploration Of Early Matter Domination Scenarios, Jacek Ksawery Osinski

Physics & Astronomy ETDs

In the standard thermal history of the Universe, the energy density is dominated by radiation throughout the postinflationary era, until matter-radiation equality after big bang nucleosynthesis (BBN). However, we currently do not have any observational probes of the pre-BBN period, and radiation domination (RD) is therefore an assumption. Generic early Universe models predict the presence of additional components in the postinflationary Universe which can lead to periods of nonstandard evolution before the onset of BBN. A prominent example of such a period is a phase of early matter domination (EMD) in which the Universe undergoes matter-dominated expansion for a time, …


New Foundation In The Sciences: Physics Without Sweeping Infinities Under The Rug, Florentin Smarandache, Victor Christianto, Robert Neil Boyd Dec 2019

New Foundation In The Sciences: Physics Without Sweeping Infinities Under The Rug, Florentin Smarandache, Victor Christianto, Robert Neil Boyd

Branch Mathematics and Statistics Faculty and Staff Publications

It is widely known among the Frontiers of physics, that “sweeping under the rug” practice has been quite the norm rather than exception. In other words, the leading paradigms have strong tendency to be hailed as the only game in town. For example, renormalization group theory was hailed as cure in order to solve infinity problem in QED theory. For instance, a quote from Richard Feynman goes as follows: “What the three Nobel Prize winners did, in the words of Feynman, was "to get rid of the infinities in the calculations. The infinities are still there, but now they can …


Using Natural Phenomena To Study The Ionosphere, Joseph Benjamin Malins Nov 2019

Using Natural Phenomena To Study The Ionosphere, Joseph Benjamin Malins

Physics & Astronomy ETDs

This dissertation explores novel techniques for observing the ionosphere using natural signals. The ionosphere is a region of plasma hundreds of kilometers above the Earth that affects communication and remote sensing applications across the world. Traditional techniques for observing the ionosphere involve using man made radio signals, either to reflect the signal at HF frequencies or to pass several signals through the ionosphere and compare the difference the ionosphere makes in the signals. However, such techniques are limited by the ability of equipment to produce these signals and by the numerous laws and regulations governing transmission of signals in the …


Electromagnetic Analysis Of Bidirectional Reflectance From Roughened Surfaces And Applications To Surface Shape Recovery, Julian Antolin Camarena Nov 2019

Electromagnetic Analysis Of Bidirectional Reflectance From Roughened Surfaces And Applications To Surface Shape Recovery, Julian Antolin Camarena

Physics & Astronomy ETDs

Scattering from randomly rough surfaces is a well-established sub area of electrodynamics. There remains much to be done since each surface and optical processes that may occur in within the scattering medium, and countless other scenarios, is different. There are also illumination models that describe lighting in a scene on the macroscopic scale where geometrical optics can be considered adequate. Of particular interest for us is the intersection of the physical scattering theories and the illumination models. We present two contributions: 1) A minimum of two independent images are needed since any opaque surface can be uniquely specified in terms …


On Newtonian Dynamics With A Variable Earth Mass: Geodetic Evidence And Its Implications On Pioneer Spacecraft Anomaly And Lageos Satellite, Victor Christianto, Florentin Smarandache Sep 2019

On Newtonian Dynamics With A Variable Earth Mass: Geodetic Evidence And Its Implications On Pioneer Spacecraft Anomaly And Lageos Satellite, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

Around 3 decades ago, Jayant Narlikar & Halton Arp argued on possible variable mass hypothesis cosmology (VMH). In the meantime, the Earth expansion problem has attracted great interest, and recent study gives geodetic evidence that the Earth has been expanding, at least over the recent several decades. Therefore, in the present article discusses some interesting effects related to varying G, but here we argue that instead of varying G we can think of varying mass (M). Among other things we discuss receding planets from the Sun, calculation of Pioneer spacecraft anomaly as proposed by B.G. Sidharth, and also possible slight …


One-Note-Samba Approach To Cosmology, Florentin Smarandache, Victor Christianto Aug 2019

One-Note-Samba Approach To Cosmology, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

Inspired by One Note Samba, a standard jazz repertoire, we present an outline of Bose-Einstein Condensate Cosmology. Although this approach seems awkward and a bit off the wall at first glance, it is not impossible to connect altogether BEC, Scalar Field Cosmology and Feshbach Resonance with Ermakov-Pinney equation. We also briefly discuss possible link with our previous paper which describes Newtonian Universe with Vortex in terms of Ermakov equation.


Quantum Algorithms With Applications To Simulating Physical Systems, Anirban Ch Narayan Chowdhury Jul 2019

Quantum Algorithms With Applications To Simulating Physical Systems, Anirban Ch Narayan Chowdhury

Physics & Astronomy ETDs

The simulation of quantum physical systems is expected to be an important application for quantum computers. The work presented in this dissertation aims to improve the resource requirements of quantum computers for solving simulation problems, by providing both novel quantum algorithms and improved implementations of existing ones. I present three main results that cover diverse aspects of simulation including equilibrium physics, the preparation of useful quantum states, and simulations based on classical stochastic processes. The results rely on established quantum algorithms and other recent techniques which I review. My first original contribution is a new quantum algorithm to sample from …


Studying The Properties Of Sf6 Gas Mixtures For Directional Dark Matter Detection, Randy J. Lafler Jul 2019

Studying The Properties Of Sf6 Gas Mixtures For Directional Dark Matter Detection, Randy J. Lafler

Physics & Astronomy ETDs

Although dark matter comprises approximately 85\% of the matter content of the universe, direct detection of dark matter remains elusive. As the available parameter space for dark matter candidates is pushed to lower and lower limits, the demand for larger, more sensitive detectors continues to grow. Although upscaling the detector improves the sensitivity, it greatly increases the cost and complexity of the experiment. Even after a dark matter signal is detected, there remains the possibility that an unknown background mimics the dark matter signal. Consequently, verifying the dark matter origin of a detection signal is an issue for any dark …


Searching For Supermassive Binary Black Holes And Their Gravitational Waves, Karishma Bansal Jul 2019

Searching For Supermassive Binary Black Holes And Their Gravitational Waves, Karishma Bansal

Physics & Astronomy ETDs

The recent discovery of gravitational waves (GWs) by the LIGO collaboration has opened a new observing window on the universe, but it is limited to the GWs in the frequency range of 10-1000 Hz. The main motivation of this thesis is to consider the possibility of detecting low frequency (nHz) GWs. In the pursuit of these waves, we need to understand their source of origin and build a detector with the required sensitivity. Low-frequency waves are expected as a result of coalescing binary supermassive black holes (SMBBHs). We hope to detect these waves in the near future using pulsar timing …


Circumstellar Sio Masers In The Bulge Asymmetries And Dynamical Evolution Survey, Michael Cullen Stroh Jul 2019

Circumstellar Sio Masers In The Bulge Asymmetries And Dynamical Evolution Survey, Michael Cullen Stroh

Physics & Astronomy ETDs

The Bulge Asymmetries and Dynamical Evolution (BAaDE) project aims to explore the complex structure of the inner Galaxy and Galactic Bulge, by using the 43 GHz receivers at the Karl G. Jansky Very Large Array (VLA) and the 86 GHz receivers at the Atacama Large Millimeter/submillimeter Array (ALMA) to observe SiO maser lines in red giant stars. The SiO maser transitions occur at radio frequencies, where extinction is negligible, thus allowing a dense sampling of line-of-sight velocities in the most crowded regions of the Milky Way.

The overall goal of this thesis is to characterize the SiO masers in the …


Studies On The Generation And Detection Of Orbital Angular Momentum Based On Beam-Shaping Techniques, Xijie Luo May 2019

Studies On The Generation And Detection Of Orbital Angular Momentum Based On Beam-Shaping Techniques, Xijie Luo

Physics & Astronomy ETDs

Light carrying orbital angular momentum (OAM) has many applications ranging from optical manipulation, imaging and remote sensing, and optical communications, and can be used to perform fundamental studies in quantum mechanics and quantum information. Moreover, single photons with high-order OAM allow for increasing the amount of information carried per photon in quantum communication. This thesis describes the study of methods for the preparation and detection of OAM of light in high mode order by utilizing beam shaping techniques using spatial light modulators (SLMs). The quality of the generated high-order OAM mode is limited by optical aberrations which are induced by …


Compact Optical Frequency Standards For Future Applications Beyond The Laboratory, Kyle Martin Mar 2019

Compact Optical Frequency Standards For Future Applications Beyond The Laboratory, Kyle Martin

Physics & Astronomy ETDs

Atomic clocks provide one of the fundamental building blocks upon which modern telecommunications systems are constructed. Since the invention of the frequency comb in the early 2000s, laboratory frequency standards have quickly outpaced their compact counterparts. Compact clocks, however, have continued to leverage microwave transitions not yet exploring the advantages of an optical atomic clock. With the recent development of robust frequency combs compact optical clocks can now be realized. In this dissertation two atomic species are investigated for a compact atomic frequency standards. Both of these clocks are in different development stages but offer unique advantages. The optical rubidium …


From Big Science To “Deep Science”, Florentin Smarandache, Victor Christianto Mar 2019

From Big Science To “Deep Science”, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

The Standard Model of particle physics has accomplished a great deal including the discovery of Higgs boson in 2012. However, since the supersymmetric extension of the Standard Model has not been successful so far, some physicists are asking what alternative deeper theory could be beyond the Standard Model? This article discusses the relationship between mathematics and physical reality and explores the ways to go from Big Science to “Deep Science”.


On The New Concept Creatio Ex-Rotatione, Florentin Smarandache, Victor Christianto Jan 2019

On The New Concept Creatio Ex-Rotatione, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

It is known that the Big Bang theory was based on the concept of creation ex nihilo, after ancient Greek philosophers. In this paper, we discuss the concept of creatio ex nihilo, as well as two other approaches - Intelligent Design and Emergence Theory. We argue that beside the above three approaches, a new concept called creatio ex-rotatione offers a resolution to the long standing disputes between beginning and eternity of the Universe. We agree with Vaas: [h]ow a conceptual and perhaps physical solution of the temporal aspect of Immanuel Kant’s “first antinomy of pure reason” is possible, i.e., how …


How To Celebrate 24 New Year's Eves In A Single Year!, Florentin Smarandache Jan 2019

How To Celebrate 24 New Year's Eves In A Single Year!, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

New Year's Eve 2018 reaches me on Jeju Island, South Korea, in the East China Sea. While I had spent New Year's Eve 2017 in Galapagos Islands, in the Pacific. We can celebrate 24 New Year's Eves in a single year, moving to the West – for example in an orbital spacecraft - (in the reverse sense of Earth's rotation around its axis) at a faster angular speed than Earth's rotation, jumping from one time-zone to another, and starting from the International Date Line. { In this paper we are referring to the solar day, hence to the angular speed …


The Encyclopedia Of Neutrosophic Researchers - Vol. 3, Florentin Smarandache Jan 2019

The Encyclopedia Of Neutrosophic Researchers - Vol. 3, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This is the third volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: …


Neutrosophic Triplet Structures - Vol. 1, Florentin Smarandache, Memet Sahin Jan 2019

Neutrosophic Triplet Structures - Vol. 1, Florentin Smarandache, Memet Sahin

Branch Mathematics and Statistics Faculty and Staff Publications

Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, indeterminacy and inconsistent information in which human knowledge is necessary, and human evaluation is needed. Neutrosophic set theory was firstly proposed in 1998 by Florentin Smarandache, who also developed the concept of single valued neutrosophic set, oriented towards real world scientific and engineering applications. Since then, the single valued neutrosophic set theory has been extensively studied in books and monographs, the properties of neutrosophic sets …


A Few Calculations Of Receding Moon From Spherical Kinetic Dynamics, Receding Planetary Orbits, And The Quantization Of Celestial Motions, Florentin Smarandache, Victor Christianto, Robert Neil Boyd Jan 2019

A Few Calculations Of Receding Moon From Spherical Kinetic Dynamics, Receding Planetary Orbits, And The Quantization Of Celestial Motions, Florentin Smarandache, Victor Christianto, Robert Neil Boyd

Branch Mathematics and Statistics Faculty and Staff Publications

The present article discusses some interesting phenomena including the Lense-Thirring type anomalous precession, using a known spherical kinetic dynamics approach. Other implications include a plausible revised version of the celestial quantization equation described by Nottale and Rubcic & Rubcic. If the proposition described herein corresponds to the facts, then this kinetic dynamics interpretation of ‘frame-dragging’ effect could be viewed as a step to unification between GTR-type phenomena and QM. Further observation to verify or refute this conjecture is recommended, plausibly using LAGEOS type satellites.


Electron Model Based On Helmholtz’S Electron Vortex Theory & Kolmogorov’S Theory Of Turbulence, Florentin Smarandache, Victor Christianto, Robert Neil Boyd Jan 2019

Electron Model Based On Helmholtz’S Electron Vortex Theory & Kolmogorov’S Theory Of Turbulence, Florentin Smarandache, Victor Christianto, Robert Neil Boyd

Branch Mathematics and Statistics Faculty and Staff Publications

In this paper, we explore a new electron model based on Helmholtz’s electron vortex and Kolmogorov theory of turbulence. We also discuss a new model of origination of charge and matter.