Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Universal Aspects Of Barrier Crossing Under Bias, Sudeep Adhikari, Kevin S. D. Beach Oct 2023

Universal Aspects Of Barrier Crossing Under Bias, Sudeep Adhikari, Kevin S. D. Beach

Faculty and Student Publications

The thermal activation process by which a system passes from one local energy minimum to another is a recurring motif in physics, chemistry, and biology. For instance, biopolymer chains are typically modeled in terms of energy landscapes, with folded and unfolded conformations represented by two distinct wells separated by a barrier. The rate of transfer between wells depends primarily on the height of the barrier, but it also depends on the details of the shape of the landscape along the trajectory. We consider the case of bias due to an external force, analogous to the pulling force applied in optical …


Phytochemical Investigation Of Egyptian Spinach Leaves, A Potential Source For Antileukemic Metabolites: In Vitro And In Silico Study, Shimaa M. Abdelgawad, Mona H. Hetta, Mohamed A. Ibrahim, Premalatha Balachandran Oct 2022

Phytochemical Investigation Of Egyptian Spinach Leaves, A Potential Source For Antileukemic Metabolites: In Vitro And In Silico Study, Shimaa M. Abdelgawad, Mona H. Hetta, Mohamed A. Ibrahim, Premalatha Balachandran

Faculty and Student Publications

Spinacia oleracea L., Amaranthaceae, leaves cultivated in Egypt demonstrated a potential antileukemic activity against the chronic myeloid leukemia, K562 cell line. Thus, the aim of this study is to carry out a phytochemical investigation of S. oleracea leaves as well as the isolation of its antileukemic phytoconstituents. Phytochemical investigation of S. oleracea leaves resulted in the isolation of seventeen known compounds. The biological study revealed that compounds hexaprenol, phytol, and 18-[(1-oxohexadecyl) oxy]-9-octadecenoic acid exhibited a remarkable antiproliferative activity against K562 cells in vitro. A mechanistic in silico study showed that hexaprenol, phytol, and 18-[(1-oxohexadecyl) oxy]-9-octadecenoic acid exhibited a strong binding …


A Molecular Dynamics Study Of The Laser Sintering Process And Subsequent Mechanical Properties Of Γ-Tial Nanoparticles, Eleanor Dickens Apr 2022

A Molecular Dynamics Study Of The Laser Sintering Process And Subsequent Mechanical Properties Of Γ-Tial Nanoparticles, Eleanor Dickens

Honors Theses

Using molecular dynamics (MD) simulations, the laser sintering additive manufacturing process is investigated through the observation of γ-TiAl nanoparticles. This process is conducted using both uni-directional chain and stacking configurations. By mimicking the heating process and varying laser sintering parameters such as heating rater, sintering temperature, and particle orientation, the fusion behavior and resulting products are analyzed for both chain and stacking NP patterns. In of single chain cases, it is noticed that slower heating rates and higher melting temperatures yield larger neck growth between each individual particle and thus produce a more stable product. This leads to stronger mechanical …


Sequentialdynamics Of Stearoyl-Coa Desaturase-1(Scd1)/Ligand Binding And Unbinding Mechanism: A Computational Study, Anna B. Petroff, Rebecca L. Weir, Charles R. Yates, Joseph D. Ng Oct 2021

Sequentialdynamics Of Stearoyl-Coa Desaturase-1(Scd1)/Ligand Binding And Unbinding Mechanism: A Computational Study, Anna B. Petroff, Rebecca L. Weir, Charles R. Yates, Joseph D. Ng

Faculty and Student Publications

Stearoyl-CoA desaturase-1 (SCD1 or delta-9 desaturase, D9D) is a key metabolic protein that modulates cellular inflammation and stress, but overactivity of SCD1 is associated with diseases, including cancer and metabolic syndrome. This transmembrane endoplasmic reticulum protein converts saturated fatty acids into monounsaturated fatty acids, primarily stearoyl-CoA into oleoyl- CoA, which are critical products for energy metabolism and membrane composition. The present computational molecular dynamics study characterizes the molecular dynamics of SCD1 with substrate, product, and as an apoprotein. The modeling of SCD1:fatty acid interactions suggests that: (1) SCD1:CoA moiety interactions open the substrate-binding tunnel, (2) SCD1 stabilizes a substrate conformation …


Optimization Rules For Sars-Cov-2 MPro Antivirals: Ensemble Docking And Exploration Of The Coronavirus Protease Active Site, Shana V. Stoddard, Serena D. Stoddard, Benjamin K. Oelkers, Kennedi Fitts, Kellen Whalum, Kaylah Whalum, Alexander D. Hemphill, Jithin Manikonda, Linda Michelle Martinez, Elizabeth G. Riley, Caroline M. Roof, Nowreen Sarwar, Doni M. Thomas, Emily Ulmer, Felissa E. Wallace, Pankaj Pandey, Sudeshna Roy Sep 2020

Optimization Rules For Sars-Cov-2 MPro Antivirals: Ensemble Docking And Exploration Of The Coronavirus Protease Active Site, Shana V. Stoddard, Serena D. Stoddard, Benjamin K. Oelkers, Kennedi Fitts, Kellen Whalum, Kaylah Whalum, Alexander D. Hemphill, Jithin Manikonda, Linda Michelle Martinez, Elizabeth G. Riley, Caroline M. Roof, Nowreen Sarwar, Doni M. Thomas, Emily Ulmer, Felissa E. Wallace, Pankaj Pandey, Sudeshna Roy

Faculty and Student Publications

© 2020 by the authors. Coronaviruses are viral infections that have a significant ability to impact human health. Coronaviruses have produced two pandemics and one epidemic in the last two decades. The current pandemic has created a worldwide catastrophe threatening the lives of over 15 million as of July 2020. Current research efforts have been focused on producing a vaccine or repurposing current drug compounds to develop a therapeutic. There is, however, a need to study the active site preferences of relevant targets, such as the SARS-CoV-2 main protease (SARS-CoV-2 Mpro), to determine ways to optimize these drug compounds. The …


Schinus Molle: Anatomy Of Leaves And Stems, Chemical Composition And Insecticidal Activities Of Volatile Oil Against Bed Bug (Cimex Lectularius), Camila D. Machado, Vijayasankar Raman, Junaid U. Rehman, Beatriz H.L.N.S. Maia, Emanuelle K. Meneghetti, Valter P. Almeida, Rosi Z. Silva, Paulo V. Farago, Ikhlas A. Khan, Jane M. Budel Jan 2019

Schinus Molle: Anatomy Of Leaves And Stems, Chemical Composition And Insecticidal Activities Of Volatile Oil Against Bed Bug (Cimex Lectularius), Camila D. Machado, Vijayasankar Raman, Junaid U. Rehman, Beatriz H.L.N.S. Maia, Emanuelle K. Meneghetti, Valter P. Almeida, Rosi Z. Silva, Paulo V. Farago, Ikhlas A. Khan, Jane M. Budel

Faculty and Student Publications

© 2019 by the authors The investigation of the constituents that were isolated from Turnera diffusa (damiana) for their inhibitory activities against recombinant human monoamine oxidases (MAO-A and MAO-B) in vitro identified acacetin 7-methyl ether as a potent selective inhibitor of MAO-B (IC50 = 198 nM). Acacetin 7-methyl ether (also known as 5-hydroxy-40, 7-dimethoxyflavone) is a naturally occurring flavone that is present in many plants and vegetables. Acacetin 7-methyl ether was four-fold less potent as an inhibitor of MAO-B when compared to acacetin (IC50 = 50 nM). However, acacetin 7-methyl ether was >500-fold selective against MAO-B over MAO-A as compared …


Physical, Mechanical And Chemical Aging Of Polyurea Nanocomposites, Ghanshyam Pal Jan 2013

Physical, Mechanical And Chemical Aging Of Polyurea Nanocomposites, Ghanshyam Pal

Electronic Theses and Dissertations

Two component polyurea systems, on one hand, are gaining popularity as corrosion and abrasion resistant coatings and linings while on the other hand there are a few polyurea compositions being used as barrier against blast and ballistic threats to protect nation's critical infrastructure. Physical properties of polymer composites can be tailored with appropriate choice of type, size and amount of reinforcement. In general, nano-sized reinforcements provide better reinforcing over conventional reinforcements due to higher surface to volume ratio. In this dissertation, the first aim is to study effect of nanoreinforcement addition on the overall character (mechanical, chemical and microstructural) of …


Molecular Details Of The Catalytic Activity Of Carboxylesterases, Xiaozhen Yu Jan 2011

Molecular Details Of The Catalytic Activity Of Carboxylesterases, Xiaozhen Yu

Electronic Theses and Dissertations

Carboxylesterases (CEs; EC 3.1.1.1) are ubiquitous enzymes responsible for the detoxification of xenobiotics. CEs hydrolyze carboxyl esters into their corresponding alcohol and carboxylic acid. Because of their biological functions, especially their roles in converting inactive prodrugs, such as the anti-cancer drug CPT-11, to their active metabolites, a good understanding of the mechanism of the hydrolysis reaction will give us a better direction for drug design. In this study, we used a multidisciplinary approach (computational simulation, molecular biology techniques and enzyme kinetic methods) to study the dynamic motions of CEs and the potential role of these motions in the catalytic mechanism …