Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Microrna Regulation Of Epigenetic Modifiers In Breast Cancer, Brock Humphries, Zhishan Wang, Chengfeng Yang Jun 2019

Microrna Regulation Of Epigenetic Modifiers In Breast Cancer, Brock Humphries, Zhishan Wang, Chengfeng Yang

Toxicology and Cancer Biology Faculty Publications

Epigenetics refers to the heritable changes in gene expression without a change in the DNA sequence itself. Two of these major changes include aberrant DNA methylation as well as changes to histone modification patterns. Alterations to the epigenome can drive expression of oncogenes and suppression of tumor suppressors, resulting in tumorigenesis and cancer progression. In addition to modifications of the epigenome, microRNA (miRNA) dysregulation is also a hallmark for cancer initiation and metastasis. Advances in our understanding of cancer biology demonstrate that alterations in the epigenome are not only a major cause of miRNA dysregulation in cancer, but that miRNAs …


An Integrative Cross-Omics Analysis Of Dna Methylation Sites Of Glucose And Insulin Homeostasis, Jun Liu, Elena Carnero-Montoro, Jenny Van Dongen, Samantha Lent, Ivana Nedeljkovic, Symen Ligthart, Pei-Chien Tsai, Tiphaine C. Martin, Pooja R. Mandaviya, Rick Jansen, Marjolein J. Peters, Liesbeth Duijts, Vincent W. V. Jaddoe, Henning Tiemeier, Janine F. Felix, Gonneke Willemsen, Eco J. C. De Geus, Audrey Y. Chu, Daniel Levy, Shih-Jen Hwang, Jan Bressler, Rahul Gondalia, Elias L. Salfati, Christian Herder, Bertha A. Hidalgo, Toshiko Tanaka, Ann Zenobia Moore, Rozenn N. Lemaitre, Min A. Jhun, Jennifer A. Smith, Donna K. Arnett Jun 2019

An Integrative Cross-Omics Analysis Of Dna Methylation Sites Of Glucose And Insulin Homeostasis, Jun Liu, Elena Carnero-Montoro, Jenny Van Dongen, Samantha Lent, Ivana Nedeljkovic, Symen Ligthart, Pei-Chien Tsai, Tiphaine C. Martin, Pooja R. Mandaviya, Rick Jansen, Marjolein J. Peters, Liesbeth Duijts, Vincent W. V. Jaddoe, Henning Tiemeier, Janine F. Felix, Gonneke Willemsen, Eco J. C. De Geus, Audrey Y. Chu, Daniel Levy, Shih-Jen Hwang, Jan Bressler, Rahul Gondalia, Elias L. Salfati, Christian Herder, Bertha A. Hidalgo, Toshiko Tanaka, Ann Zenobia Moore, Rozenn N. Lemaitre, Min A. Jhun, Jennifer A. Smith, Donna K. Arnett

Epidemiology and Environmental Health Faculty Publications

Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation …


Common Garden Experiment Reveals Altered Nutritional Values And Dna Methylation Profiles In Micropropagated Three Elite Ghanaian Sweet Potato Genotypes, Belinda Akomeah, Marian D. Quain, Sunita A. Ramesh, Lakshay Anand, Carlos M. Rodríguez López Apr 2019

Common Garden Experiment Reveals Altered Nutritional Values And Dna Methylation Profiles In Micropropagated Three Elite Ghanaian Sweet Potato Genotypes, Belinda Akomeah, Marian D. Quain, Sunita A. Ramesh, Lakshay Anand, Carlos M. Rodríguez López

Horticulture Faculty Publications

Micronutrient deficiency is the cause of multiple diseases in developing countries. Staple crop biofortification is an efficient means to combat such deficiencies in the diets of local consumers. Biofortified lines of sweet potato (Ipomoea batata L. Lam) with enhanced beta-carotene content have been developed in Ghana to alleviate Vitamin A Deficiency. These genotypes are propagated using meristem micropropagation to ensure the generation of virus-free propagules. In vitro culture exposes micropropagated plants to conditions that can lead to the accumulation of somaclonal variation with the potential to generate unwanted aberrant phenotypes. However, the effect of micropropagation induced somaclonal variation on …


Parp1 Is A Versatile Factor In The Regulation Of Mrna Stability And Decay, Elena A. Matveeva, Lein F. Mathbout, Yvonne N. Fondufe-Mittendorf Mar 2019

Parp1 Is A Versatile Factor In The Regulation Of Mrna Stability And Decay, Elena A. Matveeva, Lein F. Mathbout, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

PARP1 is an abundant nuclear protein with many pleiotropic functions involved in epigenetic and transcriptional controls. Abundance of mRNA depends on the balance between synthesis and decay of a particular transcript. PARP1 binds RNA and its depletion results in increased expression of genes involved in nonsense-mediated decay, suggesting that PARP1 might be involved in mRNA stability. This is of interest considering RNA binding proteins play key roles in post-transcriptional processes in all eukaryotes. We tested the direct impact of PARP1 and PARylation on mRNA stability and decay. By measuring the half-lives of two PARP1-mRNA targets we found that the half-lives …


Coupling Of Parp1-Mediated Chromatin Structural Changes To Transcriptional Rna Polymerase Ii Elongation And Cotranscriptional Splicing, Elena A. Matveeva, Qamar M. H. Al-Tinawi, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf Feb 2019

Coupling Of Parp1-Mediated Chromatin Structural Changes To Transcriptional Rna Polymerase Ii Elongation And Cotranscriptional Splicing, Elena A. Matveeva, Qamar M. H. Al-Tinawi, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Background: Recently, we showed that PARP1 is involved in cotranscriptional splicing, possibly by bridging chromatin to RNA and recruiting splicing factors. It also can influence alternative splicing decisions through the regulation of RNAPII elongation. In this study, we investigated the effect of PARP1-mediated chromatin changes on RNAPII movement, during transcription and alternative splicing.

Results: We show that RNAPII pauses at PARP1–chromatin structures within the gene body. Knockdown of PARP1 abolishes this RNAPII pausing, suggesting that PARP1 may regulate RNAPII elongation. Additionally, PARP1 alters nucleosome deposition and histone post-translational modifications at specific exon–intron boundaries, thereby affecting RNAPII movement. Lastly, genome-wide analyses …


Effects Of Suv39h1 And Suv420h1/H2 On Programmed Genome Rearrangement In Petromyzon Marinus, Claire A. Scott Jan 2019

Effects Of Suv39h1 And Suv420h1/H2 On Programmed Genome Rearrangement In Petromyzon Marinus, Claire A. Scott

Oswald Research and Creativity Competition

The sea lamprey (Petromyzon marinus), diverged from the vertebrate lineage roughly 550 million years ago, prior to the evolution of several major morphological features such as jaws and paired fins/appendages. Lamprey therefore provides a comparative perspective that can be used to study the evolution of differences in genome regulation, including epigenetics and programmed genome rearrangement (PGR). Programmed genome rearrangement is a unique regulatory mechanism wherein specific genes are effectively turned off by completely eliminating their sequences from the genome. Through PGR, lamprey delete approximately 20% of their genome from all somatic cells, with these specific sequences being only …