Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Assessing The Spatial Accuracy And Precision Of Lidar For Remote Sensing In Agriculture, Surya Saket Dasika Jan 2018

Assessing The Spatial Accuracy And Precision Of Lidar For Remote Sensing In Agriculture, Surya Saket Dasika

Theses and Dissertations--Biosystems and Agricultural Engineering

The objective of this whole study was to evaluate a LiDAR sensor for high-resolution remote sensing in agriculture. A linear motion system was developed to precisely control the dynamics of LiDAR sensor in effort to remove uncertainty in the LiDAR position/velocity while under motion. A user control interface was developed to operate the system under different velocity profiles and log LiDAR data synchronous to the motion of the system. The LiDAR was then validated using multiple test targets with five different velocity profiles to determine the effect of sensor velocity and height above a target on measurement error. The results …


Precise Evaluation Of Gnss Position And Latency Errors In Dynamic Agricultural Applications, Michael P. Sama Jan 2013

Precise Evaluation Of Gnss Position And Latency Errors In Dynamic Agricultural Applications, Michael P. Sama

Theses and Dissertations--Biosystems and Agricultural Engineering

A method for precisely synchronizing an external serial data stream to the pulse-per-second (PPS) output signal from a global navigation satellite-based system (GNSS) receiver was investigated. A signal timing device was designed that used a digital signal processor (DSP) with serial inputs and input captures to generate time stamps for asynchronous serial data based on an 58593.75 Hz internal timer. All temporal measurements were made directly in hardware to eliminate software latency. The resolution of the system was 17.1 µs, which translated to less than one millimeter of horizontal position error at travel speeds typical of most agricultural operations.

The …


Computational Tools For Improving Route Planning In Agricultural Field Operations, Rodrigo S. Zandonadi Jan 2012

Computational Tools For Improving Route Planning In Agricultural Field Operations, Rodrigo S. Zandonadi

Theses and Dissertations--Biosystems and Agricultural Engineering

In farming operation, machinery represents a major cost; therefore, good fleet management can have a great impact on the producer’s profit, especially considering the increasing costs of fuel and production inputs in recent years. One of the tasks to be accomplished in order to improve fleet management is planning the path that the machine should take to cover the field while working. Information such as distance traveled, time and fuel consumption as well as agricultural inputs wasted due to off-target-application areas are crucial in the path planning process. Parameters such as field boundary size and geometry, machine total width as …