Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 37

Full-Text Articles in Entire DC Network

A Numerical Analysis Of Shock Angles From Inward Turning Axisymmetric Flows, William L. Hilal Jan 2023

A Numerical Analysis Of Shock Angles From Inward Turning Axisymmetric Flows, William L. Hilal

Honors Undergraduate Theses

Detonation-based propulsion systems are known for their high efficiency and energy release when compared to deflagrative systems, making them an ideal candidate in hypersonic propulsion applications. One such engine is the Oblique Detonation Wave (ODW) engine, which has a similar architecture to traditional scramjets but shortens the combustor and isolator to an anchored ODW after fuel injection.

Previous research has focused on using a two-dimensional wedge to induce an ODW while limiting total losses through the combustor. In this configuration, a two-dimensional wedge-based architecture entails a rectangular duct, limiting potential inlet design and increasing overall skin friction. However, an inward-turning …


An Optimization Study Of Small-Scale Propeller Blade, Fahad M. Nabid Jan 2023

An Optimization Study Of Small-Scale Propeller Blade, Fahad M. Nabid

Honors Undergraduate Theses

This research paper aims to investigate the optimization of smaller propeller blades to achieve maximum efficiency by studying the effect of the twist angle on reducing drag, increasing thrust, and preventing rapid wear on the blade. Inefficient propellers consume a significant amount of energy, particularly during low-speed flights. The low Reynolds number regime challenges aviation engineers to design propellers with the highest possible efficiency to minimize energy losses. The primary objective of this thesis is to optimize smaller propeller blade shapes to enable them to produce maximum efficiency. The advanced ratio of a propeller blade heavily influences the blade's performance …


A Framework For The Automatic Identification Of Optimized Yield Surface Parameters, Kevin Hanekom Jan 2023

A Framework For The Automatic Identification Of Optimized Yield Surface Parameters, Kevin Hanekom

Honors Undergraduate Theses

Advanced engineering materials are designed to display tensile-compressive asymmetry (TCA) and anisotropy to provide unique attributes to critical components necessary in the hot section of turbines. The never-ending chase for higher efficiencies, and with them, higher temperature gradients, intrinsically leads to more and more of these complex materials, like single crystal turbine blades, embedded within the turbine environment. Mathematical models, known as yield criteria, allow engineers to visualize the mechanical behavior of these materials in various orientations under complex loading. Yield criteria are dependent on three key items in determination of their governing parameters: material test data, mathematical constraints, and …


Hypersonic Scramjet Inlet Development For Variable Mach Number Flows, Zachary P. White Jan 2023

Hypersonic Scramjet Inlet Development For Variable Mach Number Flows, Zachary P. White

Honors Undergraduate Theses

Hypersonic propulsion has become an increasingly important research field over the past fifty years, and subsequent interest in propulsion systems utilizing supersonic combustion has emerged. Air-breathing engines are desirable for such applications as hypersonic flight vehicles would not need to carry an oxidizer. Therefore, hypersonic air-breathing propulsion systems require an inlet with high mass capture and compressive efficiency. The present work seeks to outline the development and validation of a novel design tool for producing air inlet designs for hypersonic vehicles at variable flight conditions. A Busemann inlet was chosen for its high compressive efficiency, geometric flexibility, and existing experimental …


The Numerical Study Of Aeroacoustics Performance Of Wings With Different Wavelength Leading-Edge Tubercles, Youjie Zhang Jan 2023

The Numerical Study Of Aeroacoustics Performance Of Wings With Different Wavelength Leading-Edge Tubercles, Youjie Zhang

Honors Undergraduate Theses

The leading-edge tubercle is a type of airfoil modification that inspired by the humpback whale. It was found that the aerodynamic performance of the wing would increase compared to the wing without tubercles. In the past several years, a lot of numerical and experimental studies have been accomplished to explore this leading-edge modification. Besides the aerodynamic performance change, this research explores the aeroacoustics behavior of airfoils with leading-edge tubercles. A numerical study based on Computational Fluid Dynamics (CFD) is established, and simulations using Star CCM are accomplished based on reasonable set-ups. The airfoil chosen to create the wing is NACA …


Thrust Augmentation Of Rotating Detonation Rocket Engines, Alexander G. Rodriguez Jan 2022

Thrust Augmentation Of Rotating Detonation Rocket Engines, Alexander G. Rodriguez

Honors Undergraduate Theses

This thesis aims to perform a detailed analysis on a 5th Order Polynomial Nozzle, verifying its effectiveness in improving the thrust performance of a Rotating Detonation Rocket Engine. Rotating detonation engines are a promising engine type that uses detonations as a means of combustion rather than traditional conflagration. Through this method, these engines can produce significant amounts of energy while burning less fuel in the process. However, exhaust flow instabilities and swirl limit the engine's potential for use as a means of propulsion. The 5th Order Polynomial Nozzle was previously demonstrated to reduce and control this swirl; however, analysis was …


Investigating Ground Interactions Of A Rotocraft Landing Vehicle On Titan, Adam Rozman Jan 2022

Investigating Ground Interactions Of A Rotocraft Landing Vehicle On Titan, Adam Rozman

Honors Undergraduate Theses

The exploration of celestial bodies has recently advanced from rovers to rotorcraft. This includes the recent flights of Mars Ingenuity and the upcoming Dragonfly mission to explore the terrain of Saturn’s moon Titan as part of NASA’s New Frontiers Program. Flight-based landers can travel quickly to sites kilometers apart and land in complex terrain. Although cruise conditions for these rotorcrafts are well understood, studies are necessary to understand take-off and landing. In ground effect conditions, a rotor wake impinges and reflects off the ground, creating changes in aerodynamics such as increased lift. Additionally, operating over loose surfaces, the rotors can …


The Early Propagation And Burning Of Hydrogen In The Process Of The Deflagration To Detonation Transition, Rom Amasay Jan 2022

The Early Propagation And Burning Of Hydrogen In The Process Of The Deflagration To Detonation Transition, Rom Amasay

Honors Undergraduate Theses

The safe and efficient propagation of the Deflagration to Detonation Transition (DDT) is a topic that has been researched for many years due to its applications in Aerospace and Mechanical Engineering. DDT is when fire caused by the burning of fuel is accelerated to the upper CJ point on the Rankine Hugoniot curve due to instabilities in the flame and the turbulence caused by these instabilities. The complex flame dynamics that go along with DDT have ensured that the process is yet to be fully understood and defined. This research will work towards observing the early stages of burning hydrogen-air …


Analysis Of Nozzle Expansion Characteristics In Supersonic Retro-Propulsion, Gonzalo Montoya Jan 2022

Analysis Of Nozzle Expansion Characteristics In Supersonic Retro-Propulsion, Gonzalo Montoya

Honors Undergraduate Theses

Supersonic retro-propulsion (SRP) is defined as rocket propulsion used to decelerate aerospace vehicles at supersonic speed. SRP is often used as a method of high-speed deceleration on space vehicles. The main method of propulsion used in the application of SRP is rocket propulsion. Rocket engine thrust and performance changes with altitude and expansion ratio. Changing altitudes across the trajectory of a rocket affect how the exhaust plume shock waves expand. Being able to identify how different expansion ratios affect the exhaust plume flow fields would provide useful data on how SRP performance can be predicted. This research projects aims at …


Thermoforming Of Thin-Ply Composite Structures Via In-Situ Heating, Bojan Bijelic Jan 2022

Thermoforming Of Thin-Ply Composite Structures Via In-Situ Heating, Bojan Bijelic

Honors Undergraduate Theses

This thesis investigates thermoforming of thin-ply thermoplastic composites via in-situ heating for in-space manufacturing applications. The proposed composite concept is based on combining conductive carbon nanotube (CNT) films and high-temperature thermoplastic matrix. The CNT film is made of randomly aligned carbon nanotubes, which possesses outstanding electrical, thermal, and mechanical properties. When combined with polymer matrix, it becomes a multifunctional composite structure. The thermoplastic chosen is polyether ether ketone (PEEK), which is a semicrystalline high-performance thermoplastic that has exceptional physical and mechanical properties at high temperatures. The composite structure studied is consists of a layer of CNT film sandwiched between two …


Atomization Of A Liquid Water Jet In Crossflow At Varying Hot Temperatures For High-Speed Engine And Stratospheric Aerosol Injection Applications, Luke Caetano Jan 2022

Atomization Of A Liquid Water Jet In Crossflow At Varying Hot Temperatures For High-Speed Engine And Stratospheric Aerosol Injection Applications, Luke Caetano

Honors Undergraduate Theses

This paper aims to study how varying crossflow burning temperatures from 1100 C to 1800 C affect the liquid droplet breakup, size distribution, and atomization of a liquid water jet injected into a vitiated crossflow. The LJIC injection mechanism was implemented using the high-pressure axially staged combustion facility at the University of Central Florida. The measurement devices used to gather particle data from the exhaust plume were the TSI Aerodynamic Particle Sizer (APS), which measures particles between 0.523 µm and 20 µm, and the Sensirion SPS30 (SPS30), which measures particles between 0.3 µm and 10 µm. Both measurement devices were …


Investigation Of Pitching And Plunging Motions On A Tandem Wing Configuration, Riley M. Capiro Jan 2022

Investigation Of Pitching And Plunging Motions On A Tandem Wing Configuration, Riley M. Capiro

Honors Undergraduate Theses

From the beginning of the history of flight, inspiration has been drawn from nature. Evolution has spent millions of years optimizing creatures that rely on flight as their means of locomotion. Today, aerial vehicles are very different to those from the time of the Wright brothers. One kind of vehicle that stands to benefit in mimicking nature is the drone, particularly smaller drones. Commonly used today by militaries, industry and civilians, drones are increasingly affordable while also decreasing in size thanks to advancements in electronics and manufacturing methods. The purpose of this thesis is to investigate how pitching and rolling …


The Effects Of Supersonic Reacting Flow Over A Wedge, Taylor R. Brown Jan 2022

The Effects Of Supersonic Reacting Flow Over A Wedge, Taylor R. Brown

Honors Undergraduate Theses

There is a growing need for a fundamental understanding of how detonations are formed and sustained as propulsion technology advances toward the use of detonation-based engines. The deflagration-to-detonation transition (DDT) phenomenon is studied to better understand both the fundamentals of detonation physics and the conditions surrounding how detonations are formed and sustained. This research aims to study the effects of a wedge on DDT and detonation formation. A hydrogen-air mixture is pumped into a chamber and ignited by a spark plug. Turbulence-driven flame acceleration is induced by turbulators in the chamber through which the flame propagates. The flame then flows …


Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne Jan 2021

Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne

Honors Undergraduate Theses

The cycling industry has long relied on expensive wind tunnel testing when designing aerodynamic products, particularly in the context of wheels which account for 10 to 15 percent of a cyclist's total aerodynamic drag. With the recent advent of Computational Fluid Dynamics (CFD), the industry now has an economical tool to supplement the wheel design process; however, the complex nature of rotating spoked wheels requires high resolution meshes to model at acceptable fidelity. This research investigates an alternative CFD method that lowers the computational cost of modeling aerodynamic bicycle wheels by modeling spokes using Blade Element Method (BEM). Two CFD …


Molten Regolith Electrolysis Processing For Lunar Isru: Financial And Physics Analysis Of Spacex Starship Transportation, Cheyenne Harper Jan 2021

Molten Regolith Electrolysis Processing For Lunar Isru: Financial And Physics Analysis Of Spacex Starship Transportation, Cheyenne Harper

Honors Undergraduate Theses

The purpose of the following research is to explore molten regolith electrolysis (MRE) methodology for in-situ resource utilization (ISRU) of Highlands lunar regolith, to be explored during the initial Artemis missions. An analysis of potential commercial launch providers for MRE-equipment based on technology-readiness level (TRL), payload mass support, and $ USD/kg payload price is provided. SpaceX is ultimately proposed as a launch provider of MRE equipment following multi-factorial analysis, with the SpaceX Starship human landing system (HLS) variant proposed for supporting MRE payload. Finally, customers of regolith-derived oxygen, aluminum, and silicon are distinguished to form the business case for operating …


Motor Control System For Near-Resonance High-Cycle Fatigue Testing, Samer K. Armaly Jan 2021

Motor Control System For Near-Resonance High-Cycle Fatigue Testing, Samer K. Armaly

Honors Undergraduate Theses

This research project develops a low-cost high-cycle fatigue (HCF) testing system comprised of an AC motor, variable frequency drive (VFD), eccentric cam, and feedback controller. The system acts as a forced harmonic oscillator leveraging mechanical resonance to vibrate a specimen at a frequency required to induce the testing's strain amplitudes.

This system depends highly on the material being tested. As such, the controller incorporates material characteristics. A frequency sweep measures the strain amplitude to characterize the specimen. Additionally, other measurements such as acceleration can be used as a proxy control variables for strain. A function converts the control variable to …


A Finite Difference Model For Induced Hypothermia During Shock, Dylan S. Lyon Jan 2021

A Finite Difference Model For Induced Hypothermia During Shock, Dylan S. Lyon

Honors Undergraduate Theses

The modified Fiala model from Westin was implemented with conditions for circulatory shock and hypothermia. The purpose is to model Emergency Preservation and Resuscitation (EPR), a procedure for inducing hypothermia in patients. Cold tissue temperatures reduce metabolism exponentially, greatly extending the window of anaerobic metabolic activity before permanent deoxygenation damage. EPR in patients undergoing hypovolemic shock can preserve the patient until primary surgical care and blood transfusions are attainable., thereby increasing survival rates. The main applications of EPR are military in-situ stabilization for transit to clinical care and extending the survivability of patients requiring prolonged surgery before blood transfusion. The …


Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski Jan 2021

Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski

Honors Undergraduate Theses

The FanWing propulsion system is a novel propulsion system which aerodynamically behaves as a hybrid between a helicopter and a fixed wing aircraft, and if the knowledge base with regards to this novel concept can be fully explored, there could be a new class of aircraft developed. In the current research, only 2D CFD studies have been done for the FanWing, hence the 3D lift characteristics of the FanWing have been unknown thus far, at least in the theoretical domain. Therefore, it was proposed to develop a modified Prandtl's Lifting Line Theory numerical solution and a CFD solution, comparing the …


Experimental Study Of A Liquid Fuel Bluff Body Flame At Elevated Pressures, Karam Paul Jan 2021

Experimental Study Of A Liquid Fuel Bluff Body Flame At Elevated Pressures, Karam Paul

Honors Undergraduate Theses

The purpose of this research was to operate a bluff body flame holder with the objective of stabilizing a flame at elevated pressures over a range of equivalence ratios. The ability to have a ground-based test rig capable of maintaining stable flames at high pressures and temperatures is critical in understanding flames present in modern jet engines and gas turbine technologies. The facility was reconfigured multiple times and the resultant flame was imaged within the optical test section. A converging nozzle was utilized to choke the flow and vary the operating pressures up to 5 atm. By regulating mass flow …


Degradation From Cmas Infiltration In 7ysz Eb-Pvd Thermal Barrier Coatings, Zachary Stein Jan 2020

Degradation From Cmas Infiltration In 7ysz Eb-Pvd Thermal Barrier Coatings, Zachary Stein

Honors Undergraduate Theses

The lifetime of the high temperature ceramic coating 7 wt.% yttria-stabilized zirconia (7YSZ) is reduced when calcium-magnesium-alumino-silicate (CMAS) particulates enters aero-engines during operation in a sandy or dusty environment, melts, and infiltrates into the coating. 7YSZ undergo both chemical and mechanical degradation from CMAS infiltration during cycling. Characterization methods with synchrotron X-ray diffraction (XRD) provides a non-destructive means to measure the impact of time and temperature on coating degradation with high spatial resolution of 7YSZ coatings infiltrated and annealed by CMAS for 1 hour and 10 hours as well as at 1225 °C and 1250 °C. Additionally, qualitative results of …


Ensuring Positive Definiteness In Linear Viscoelastic Material Functions Based On Prony Series, Christopher D. Rehberg Jan 2020

Ensuring Positive Definiteness In Linear Viscoelastic Material Functions Based On Prony Series, Christopher D. Rehberg

Honors Undergraduate Theses

This thesis presents a method to correct for non-positive-definiteness in linear viscoelastic material functions. Viscoelastic material functions for anisotropic materials need to be interconverted in a matrix coefficient prony series form, with a requirement of positive definiteness. Fitting is usually done as a uniaxial prony series, resulting in scalar coefficients. When these uniaxial coefficients are placed in a coefficient matrix, the required positive definiteness cannot be guaranteed. For those matrices that do not meet this requirement, finding the nearest symmetric semi-positive definite form of the matrix results in a viable prony series matrix coefficient with the required positive definiteness. These …


Thermal-Hydraulic Optimization Of The Heat Exchange Between A Molten Salt Small Modular Reactor And A Super-Critical Carbon Dioxide Power Cycle, James Sherwood Jan 2020

Thermal-Hydraulic Optimization Of The Heat Exchange Between A Molten Salt Small Modular Reactor And A Super-Critical Carbon Dioxide Power Cycle, James Sherwood

Honors Undergraduate Theses

The next generation of nuclear power sources, Gen. IV, will include an emphasis on small, modular reactor (SMR) designs, which will allow for standardized, factory-based manufacturing and flexibility in the design of power plants by utilizing one or several modular reactor units in parallel. One of the reactor concepts being investigated is the Molten Salt Reactor concept (MSR), which utilizes a molten salt flow loop to cool the reactor and transfer heat to the power conversion cycle (PCS).Here, the use of a supercritical carbon dioxide (S-CO2) Brayton cycle is assumed for that PCS. The purpose of this thesis is to …


A Generalized Low Order Model For Vortex Shedding From A Tandem Cylinder Arrangement Using Delay Coupled Van Der Pol Oscillators, Michael Soroka Jan 2020

A Generalized Low Order Model For Vortex Shedding From A Tandem Cylinder Arrangement Using Delay Coupled Van Der Pol Oscillators, Michael Soroka

Honors Undergraduate Theses

A generalized low order model (LOM) for the fluctuating lift coefficient caused by vortex shedding from a tandem cylinder pair is proposed to expand upon models from previous authors. This model could provide a reduced computational time method for collecting qualitative and quantitive data from a tandem shedding pair. A delay coupled system with sufficient bifurcation characteristics is developed to account for the different flow regimes (extended-body, reattachment, and co-shedding) which occur as cylinder spacing is varied. Coefficient and parameter fitting is performed to fit experimental data. Finally, results and physical interpretations of the interactions in the model are discussed. …


Development Of A Computationally Inexpensive Method Of Simulating Primary Droplet Breakup, Brendon A. Cavainolo Jan 2020

Development Of A Computationally Inexpensive Method Of Simulating Primary Droplet Breakup, Brendon A. Cavainolo

Honors Undergraduate Theses

Liquid droplet impingement on aircraft can be problematic as it leads to ice accretion. There have been many incidents of aircraft disasters involving ice accretion, such as American Eagle Flight 4184. Understanding liquid droplet impingement is critical in designing aircraft that can mitigate the damages caused by icing. However, the FAA's regulations are only specified for "Appendix C" droplets; thus, aircraft designs may not be safe when accounting for droplets such as Supercooled Large Droplets. The assumptions of many models, such as the Taylor-Analogy Breakup (TAB) model, are no longer accurate for Supercooled Large Droplets, and the physics of those …


Sintering Behavior, Structural, And Catalytic Properties Of Ytterbium Oxide (Yb2o3), Alina Aftab Jan 2019

Sintering Behavior, Structural, And Catalytic Properties Of Ytterbium Oxide (Yb2o3), Alina Aftab

Honors Undergraduate Theses

Ytterbia (Yb2O3) is an oxide ceramic, whose magnetic properties and crystal structure were studied to some extent in the past. However, the information on Yb2O3's catalytic properties is lacking. Therefore, in this work, the sintering behavior and catalytic properties of Yb2O3 were examined. Yb2O3 ceramic samples were made using pressureless sintering of the commercially available Yb2O3 with 99.99% purity powder. The powder was first uniaxially pressed at 20 MPa in a steel die followed by pressureless sintering at different temperatures of 900 ⁰C …


The Exploration Of Rotating Detonation Dynamics Incorporating A Coal-Based Fuel Mixture, John P. Rogan Jan 2018

The Exploration Of Rotating Detonation Dynamics Incorporating A Coal-Based Fuel Mixture, John P. Rogan

Honors Undergraduate Theses

This investigation explores the detonation dynamics of a rotating detonation engine (RDE). Beginning with the general understanding and characteristics of hydrogen and compressed air as a detonation fuel source, this study further develops the experimental approach to incorporating a coal-based fuel mixture in an RDE. There is insufficient prior research investigating the use of coal as part of a fuel mixture and insignificant progress being made to improve thermal efficiency with deflagration. The U.S. Department of Energy's Office of Fossil Energy awarded the Propulsion and Energy Research Laboratory at the University of Central Florida a grant to lead the investigation …


Mechanisms Of Lean Flame Extinction, Ian M. Lasky Jan 2018

Mechanisms Of Lean Flame Extinction, Ian M. Lasky

Honors Undergraduate Theses

Lean flame blowout is investigated experimentally within a high-speed combustor to analyze the temporal extinction dynamics of turbulent premixed bluff body stabilized flames. The lean blowout process is induced through fuel flow reduction and captured temporally using simultaneous high-speed particle imaging velocimetry (PIV) and CH* chemiluminescence. The evolution of the flame structure, flow field, and the resulting strain rate along the flame are analyzed throughout extinction to distinguish the physical mechanisms of blowout. Flame-vortex dynamics are found to be the main driving mechanism of flame extinction; namely, a reduction of flame-generated vorticity coupled with an increase of downstream shear layer …


Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao Jan 2018

Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao

Honors Undergraduate Theses

Carbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all contributes to the emissions problem. Therefore, it is crucial to develop alternative energy sources that minimize the impact on the environment. …


Flow Control Of Tandem Cylinders Using Plasma Actuators, Jonah Larsen Jan 2018

Flow Control Of Tandem Cylinders Using Plasma Actuators, Jonah Larsen

Honors Undergraduate Theses

The flow over a set of tandem cylinders at a moderate Reynolds numbers (Re), and with different separation lengths has been studied. Two dimensional (2D) and three-dimensional (3D) plasma actuators were used to control the flow over the leading cylinder to change the vortex shedding, and subsequently the flow on the second cylinder. The 3D plasma actuator was segmented along the length of the cylinder with a spacing of λ = 4 while the 2D actuator simply ran straight down the span of the cylinder. Particle image velocimetry (PIV) measurements were used to investigate the flow along the central plane …


Atmospheric Entry, Dillon A. Martin Jan 2017

Atmospheric Entry, Dillon A. Martin

Honors Undergraduate Theses

The development of atmospheric entry guidance methods is crucial to achieving the requirements for future missions to Mars; however, many missions implement a unique controller which are spacecraft specific. Here we look at the implementation of neural networks as a baseline controller that will work for a variety of different spacecraft. To accomplish this, a simulation is developed and validated with the Apollo controller. A feedforward neural network controller is then analyzed and compared to the Apollo case.