Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

University of Central Florida

Mathematics

Ramsey theory

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Multicolor Ramsey And List Ramsey Numbers For Double Stars, Jake Ruotolo Jan 2022

Multicolor Ramsey And List Ramsey Numbers For Double Stars, Jake Ruotolo

Honors Undergraduate Theses

The core idea of Ramsey theory is that complete disorder is impossible. Given a large structure, no matter how complex it is, we can always find a smaller substructure that has some sort of order. For a graph H, the k-color Ramsey number r(H; k) of H is the smallest integer n such that every k-edge-coloring of Kn contains a monochromatic copy of H. Despite active research for decades, very little is known about Ramsey numbers of graphs. This is especially true for r(H; k) when k is at least 3, also known as the multicolor Ramsey number of …


On Saturation Numbers Of Ramsey-Minimal Graphs, Hunter M. Davenport Jan 2018

On Saturation Numbers Of Ramsey-Minimal Graphs, Hunter M. Davenport

Honors Undergraduate Theses

Dating back to the 1930's, Ramsey theory still intrigues many who study combinatorics. Roughly put, it makes the profound assertion that complete disorder is impossible. One view of this problem is in edge-colorings of complete graphs. For forbidden graphs H1,...,Hk and a graph G, we write G "arrows" (H1,...,Hk) if every k-edge-coloring of G contains a monochromatic copy of Hi in color i for some i=1,2,...,k. If c is a (red, blue)-edge-coloring of G, we say c is a bad coloring if G contains no red K3or blue K …