Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Southern Illinois University Edwardsville

Series

Electronics cooling

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Fabrication And Thermal Characterization Of Composite Cu-Cnt Micropillars For Capillary-Driven Phase-Change Cooling Devices, Gerardo Rojo, Siavash Ghanbari, Jeff Darabi Oct 2019

Fabrication And Thermal Characterization Of Composite Cu-Cnt Micropillars For Capillary-Driven Phase-Change Cooling Devices, Gerardo Rojo, Siavash Ghanbari, Jeff Darabi

SIUE Faculty Research, Scholarship, and Creative Activity

This paper presents the fabrication, testing, and modeling of an array of composite copper-carbon nanotubes (Cu-CNT) micropillars as a wick structure for potential application in passive phase-change cooling systems. This novel wick structure has a larger spacing at the base of the micropillars to provide a higher liquid permeability and mushroom-like structures on the top surface of the micropillars with a smaller spacing to provide a greater capillary pressure. The composite Cu-CNT micropillars were fabricated by an electrochemical deposition method on a patterned copper template. Cauliflower-like nanostructures were then grown on the top surface of the micropillars using chronoamperometry technique …


Fabrication And Material Characterization Of Copper And Copper-Cnt Micropillars, Siavash Ghanbari, Jeff Darabi Jul 2015

Fabrication And Material Characterization Of Copper And Copper-Cnt Micropillars, Siavash Ghanbari, Jeff Darabi

SIUE Faculty Research, Scholarship, and Creative Activity

In this work, copper micropillars and copper-carbon nanotube (CNT) composite micropillars were fabricated by incorporating an electrodeposition technique with a xurography process. In order to disperse carbon nanotubes in copper-CNT micropillars, various amounts of CNTs were added to the electroplating bath. Surface morphology and phase characterization of copper micropillars and copper-CNT composite micropillars were analyzed by optical microscopy and X-ray diffraction. In addition, the corrosion resistance (Rp) of a bare copper substrate, copper micropillars, and optimum copper-CNT micropillars were studied by electrochemical impedance spectroscopy (EIS) technique in a 3.5 wt. % sodium chloride. Experimental results yielded a corrosion …