Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Hybrid Ultra-Compact 4th Order Band-Pass Filters Based On Piezoelectric Aln Contour-Mode Mems Resonators, Chengjie Zuo, Nipun Sinha, Carlos R. Perez, Rashed Mahameed, Marcelo B. Pisani, Gianluca Piazza Jun 2008

Hybrid Ultra-Compact 4th Order Band-Pass Filters Based On Piezoelectric Aln Contour-Mode Mems Resonators, Chengjie Zuo, Nipun Sinha, Carlos R. Perez, Rashed Mahameed, Marcelo B. Pisani, Gianluca Piazza

Chengjie Zuo

This work reports on the design, fabrication and testing of a new class of hybrid (filter design using combined electrical and mechanical coupling techniques) ultra-compact (800×120 μm) 4th order band-pass filters based on piezoelectric Aluminum Nitride (AlN) contour-mode microelectromechanical (MEM) resonators. The demonstrated 110 MHz filter shows a low insertion loss of 5.2 dB in air, a high out-of-band rejection of 65 dB, a fractional bandwidth as high as 1.14% (hard to obtain when only conventional electrical coupling is used in the AlN contour-mode technology), and unprecedented 30 dB and 50 dB shape factors of 1.93 and 2.36, respectively. All …


Thermal Stability Of Electrodeposited Liga Ni-W Alloys For High Temperature Mems Applications Jan 2008

Thermal Stability Of Electrodeposited Liga Ni-W Alloys For High Temperature Mems Applications

A.S. Md Abdul Haseeb

For thermally stable LIGA materials for high temperature MEMS applications LIGA Ni-W layers and micro testing samples with different compositions (15 and 5 at% W) were electrodeposited. In order to investigate the thermal stability the Ni-W layers were annealed at different temperatures (300-700°C) and for different durations (1, 4, 16 h). Their microstructure and micro-hardness were than analysed after annealing and compared with those of as-deposited states. The observed microstructures show, in comparison to pure LIGA nickel, a small grain growth and a relatively stable structure up to 700°C. The micro-hardness values of the LIGA Ni-W layers are higher than …