Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Entire DC Network

Mitsui-7, Heat-Treated, And Nitrogen-Doped Multi-Walled Carbon Nanotubes Elicit Genotoxicity In Human Lung Epithelial Cells, Katelyn J. Siegrist, Steven H. Reynolds, Dale W. Porter, Robert R. Mercer, Alison K. Bauer, David Lowry, Lorenzo Cena, Todd A. Stueckle, Michael L. Kashon, John Wiley, Jeffrey L. Salisbury, John Mastovich, Kristin Bunker, Mark Sparrow, Jason S. Lupoi, Aleksandr B. Stefaniak, Michael J. Keane, Shuji Tsuruoka, Mauricio Terrones, Michael Mccawley, Linda M. Sargent Oct 2019

Mitsui-7, Heat-Treated, And Nitrogen-Doped Multi-Walled Carbon Nanotubes Elicit Genotoxicity In Human Lung Epithelial Cells, Katelyn J. Siegrist, Steven H. Reynolds, Dale W. Porter, Robert R. Mercer, Alison K. Bauer, David Lowry, Lorenzo Cena, Todd A. Stueckle, Michael L. Kashon, John Wiley, Jeffrey L. Salisbury, John Mastovich, Kristin Bunker, Mark Sparrow, Jason S. Lupoi, Aleksandr B. Stefaniak, Michael J. Keane, Shuji Tsuruoka, Mauricio Terrones, Michael Mccawley, Linda M. Sargent

Lorenzo Cena

Background: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity …


Electrical Conductivity, Impedance, And Percolation Behavior Of Carbon Nanofiber And Carbon Nanotube Containing Gellan Gum Hydrogels, Holly Warren, Reece Gately, Peter O'Brien, Robert Gorkin Iii, Marc In Het Panhuis Jun 2015

Electrical Conductivity, Impedance, And Percolation Behavior Of Carbon Nanofiber And Carbon Nanotube Containing Gellan Gum Hydrogels, Holly Warren, Reece Gately, Peter O'Brien, Robert Gorkin Iii, Marc In Het Panhuis

Robert Gorkin III

The electrical impedance behavior of gellan gum (GG), GG-carbon nanotube, and GG-carbon nanofiber hydrogel composites is reported. It is demonstrated that the impedance behavior of these gels can be modeled using a Warburg element in series with a resistor. Sonolysis (required to disperse the carbon fillers) does not affect GG hydrogel electrical conductivity (1.2 ± 0.1 mS/cm), but has a detrimental effect on the gel's mechanical characteristics. It was found that the electrical conductivity (evaluated using impedance analysis) increases with increasing volume fraction of the carbon fillers and decreasing water content. For example, carbon nanotube containing hydrogels exhibited a six- …


Non-Equilibrium Green's Function (Negf) Simulation Of Metallic Carbon Nanotubes Including Vacancy Defects, Neophytos Neophytou, Shaikh Ahmed, Gerhard Klimeck Nov 2013

Non-Equilibrium Green's Function (Negf) Simulation Of Metallic Carbon Nanotubes Including Vacancy Defects, Neophytos Neophytou, Shaikh Ahmed, Gerhard Klimeck

Gerhard Klimeck

The electronic behavior of metallic carbon nanotubes under the influence of externally applied electric fields is investigated using the Non-Equilibrium Green’s function method self consistently coupled with three-dimensional (3D) electrostatics. A nearest neighbor tight binding model based on a single pz orbital for constructing the device Hamiltonian is used. The 3D Poisson equation is solved using the Finite Element Method. Carbon nanotubes exhibit a very weak metallic behavior, and external electric fields can alter the electrostatic potential of the tubes significantly. A single vacancy defect in the channel of a metallic carbon nanotube can decrease its conductance by a factor …


Synthesis, Characterisation And Applications Of Carbon Nanotube Membranes Containing Macrocycles And Antibiotics, Luke Joshua Sweetman Jul 2013

Synthesis, Characterisation And Applications Of Carbon Nanotube Membranes Containing Macrocycles And Antibiotics, Luke Joshua Sweetman

Luke Sweetman

This thesis explores the development of novel carbon nanotube membranes (buckypapers, BPs) incorporating antibiotic and macrocyclic ligands as dispersants. Membranes were obtained by vacuum filtration of dispersions containing the functional dispersants, or the surfactant Triton X-100 (Trix), and either single-walled carbon nanotubes (SWNTs) or multi-walled carbon nanotubes (MWNTs). The homogeneity and stability of SWNT dispersions was first evaluated using a combination of UV-vis- NIR spectrophotometry, optical microscopy and Raman spectroscopy. Microanalytical data and energy dispersive X-ray spectra were obtained for the SWNT buckypapers, and provided evidence for retention of dispersant molecules within the structure of the membranes. The electrical conductivities …


Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza Feb 2013

Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza

Matteo Rinaldi

In this work a nano-enabled gravimetric chemical sensor prototype based on single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNT) as nano-functionalization layer for Aluminun Nitride (AIN) contour-mode resonant-MEMS gravimetric sensors has been demonstrated. Two resonators fabricated on the same silicon chip and operating at different resonance frequencies, 287 and 450 MHz, were functionalized with this novel bio-coating layer to experimentally prove the capability of two distinct single strands of DNA bound to SWNT to enhance differently the adsorption of volatile organic compounds such as dinitroluene (DNT, simulant for explosive vapor) and dymethyl-methylphosphonate (DMMP, a simulant for nerve agent sarin). The …


Gravimetric Chemical Sensor Based On The Direct Integration Of Swnts On Aln Contour-Mode Mems Resonators, Matteo Rinaldi, Chiara Zuniga, Nipun Sinha, Marzie Taheri, Samuel M. Khamis, Alan T. Johnson, Gianluca Piazza Feb 2013

Gravimetric Chemical Sensor Based On The Direct Integration Of Swnts On Aln Contour-Mode Mems Resonators, Matteo Rinaldi, Chiara Zuniga, Nipun Sinha, Marzie Taheri, Samuel M. Khamis, Alan T. Johnson, Gianluca Piazza

Matteo Rinaldi

This paper reports on the first demonstration of a gravimetric chemical sensor based on direct integration of Single Wall Carbon Nanotubes (SWNTs) grown by Chemical Vapor Deposition (CVD) on AlN Contour-Mode MicroElectroMechanical (MEMS) resonators. In this first prototype the ability of SWNTs to readily adsorb volatile organic chemicals has been combined with the capability of AlN Contour-Mode MEMS resonator to provide for different levels of sensitivity due to separate frequencies of operation on the same die. Two devices with resonance frequencies of 287 MHz and 442 MHz have been exposed to different concentrations of DMMP in the range from 80 …


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Feb 2013

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also …


Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Don Heiman, Yung Joon Jung, Latika Menon Apr 2012

Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Don Heiman, Yung Joon Jung, Latika Menon

Donald Heiman

Highly disordered multiwalled carbon nanotubes of large outer diameter (~60 nm) fabricated by means of chemical vapor deposition process inside porous alumina templates exhibit ferromagnetism when annealed in a H2/Ar atmosphere. In the presence of an applied magnetic field, there is a transition from positive to negative magnetoresistance. The transition may be explained in terms of the Bright model for ordered and disordered carbon structures. Additionally, temperature dependent electrical transport experiments exhibit a zero-bias anomaly at low temperature.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer Apr 2012

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Sivasubramanian Somu

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Parylene-C Passivated Carbon Nanotube Flexible Transistors, Selvapraba Selvarasah, Xinghui Li, Ahmed A. Busnaina, Mehmet R. Dokmeci Jun 2011

Parylene-C Passivated Carbon Nanotube Flexible Transistors, Selvapraba Selvarasah, Xinghui Li, Ahmed A. Busnaina, Mehmet R. Dokmeci

Mehmet R. Dokmeci

Carbon nanotubes are extremely sensitive to the molecular species in the environment and hence require a proper passivation technique to isolate them against environmental variations for the realization of reliable nanoelectronic devices. In this paper, we demonstrate a parylene-C passivation approach for CNT thin film transistors fabricated on a flexible substrate. The CNT transistors are encapsulated with 1 and 3 μm thick parylene-C coatings, and the transistor characteristics are investigated before and after passivation. Our findings indicate that thin parylene-C films can be utilized as passivation layers for CNT transistors and this versatile technique can be readily applied for the …


Parylene-C Passivated Carbon Nanotube Flexible Transistors, Selvapraba Selvarasah, Xinghui Li, Ahmed A. Busnaina, Mehmet R. Dokmeci Jun 2011

Parylene-C Passivated Carbon Nanotube Flexible Transistors, Selvapraba Selvarasah, Xinghui Li, Ahmed A. Busnaina, Mehmet R. Dokmeci

Ahmed A. Busnaina

Carbon nanotubes are extremely sensitive to the molecular species in the environment and hence require a proper passivation technique to isolate them against environmental variations for the realization of reliable nanoelectronic devices. In this paper, we demonstrate a parylene-C passivation approach for CNT thin film transistors fabricated on a flexible substrate. The CNT transistors are encapsulated with 1 and 3 μm thick parylene-C coatings, and the transistor characteristics are investigated before and after passivation. Our findings indicate that thin parylene-C films can be utilized as passivation layers for CNT transistors and this versatile technique can be readily applied for the …


Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Don Heiman, Yung Joon Jung, Latika Menon Jun 2011

Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Don Heiman, Yung Joon Jung, Latika Menon

Yung Joon Jung

Highly disordered multiwalled carbon nanotubes of large outer diameter (~60 nm) fabricated by means of chemical vapor deposition process inside porous alumina templates exhibit ferromagnetism when annealed in a H2/Ar atmosphere. In the presence of an applied magnetic field, there is a transition from positive to negative magnetoresistance. The transition may be explained in terms of the Bright model for ordered and disordered carbon structures. Additionally, temperature dependent electrical transport experiments exhibit a zero-bias anomaly at low temperature.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer Jun 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Ahmed A. Busnaina

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer May 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Nicol E. McGruer

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci May 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci

Yung Joon Jung

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and was hysteresis-free.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer May 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Yung Joon Jung

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci May 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci

Mehmet R. Dokmeci

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and was hysteresis-free.


Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza Jun 2009

Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza

Matteo Rinaldi

In this work a nano-enabled gravimetric chemical sensor prototype based on single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNT) as nano-functionalization layer for Aluminun Nitride (AIN) contour-mode resonant-MEMS gravimetric sensors has been demonstrated. Two resonators fabricated on the same silicon chip and operating at different resonance frequencies, 287 and 450 MHz, were functionalized with this novel bio-coating layer to experimentally prove the capability of two distinct single strands of DNA bound to SWNT to enhance differently the adsorption of volatile organic compounds such as dinitroluene (DNT, simulant for explosive vapor) and dymethyl-methylphosphonate (DMMP, a simulant for nerve agent sarin). The …


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Jun 2009

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also …


Gravimetric Chemical Sensor Based On The Direct Integration Of Swnts On Aln Contour-Mode Mems Resonators, Matteo Rinaldi, Chiara Zuniga, Nipun Sinha, Marzie Taheri, Samuel M. Khamis, Alan T. Johnson, Gianluca Piazza Feb 2009

Gravimetric Chemical Sensor Based On The Direct Integration Of Swnts On Aln Contour-Mode Mems Resonators, Matteo Rinaldi, Chiara Zuniga, Nipun Sinha, Marzie Taheri, Samuel M. Khamis, Alan T. Johnson, Gianluca Piazza

Nipun Sinha

This paper reports on the first demonstration of a gravimetric chemical sensor based on direct integration of Single Wall Carbon Nanotubes (SWNTs) grown by Chemical Vapor Deposition (CVD) on AlN Contour-Mode MicroElectroMechanical (MEMS) resonators. In this first prototype the ability of SWNTs to readily adsorb volatile organic chemicals has been combined with the capability of AlN Contour-Mode MEMS resonator to provide for different levels of sensitivity due to separate frequencies of operation on the same die. Two devices with resonance frequencies of 287 MHz and 442 MHz have been exposed to different concentrations of DMMP in the range from 80 …


Conducting Polymer-Carbon Nanotubes Composites, May Tahhan, N. Barisci, Gordon G. Wallace May 2008

Conducting Polymer-Carbon Nanotubes Composites, May Tahhan, N. Barisci, Gordon G. Wallace

Gordon Wallace

During the course of this work, three different approaches to the formation of conducting polymer/carbon nanotube (CP/CNT) composites were investigated. The first approach involved the preparation of CNT dispersions using Poly methoxy aniline-5-sulfonic acid (PMAS) as a stabilizer. The second approach investigated involved the use of CNT as the dopant in the electropolymerization of CPs. The third approach involved the electrochemical deposition of a thin polymer film onto the surface of CNT paper. These CNT/CP composites were characterized to determine capacitance, conductivity and mechanical strength.