Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Missouri University of Science and Technology

2005

Coupling

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Coupling Between Differential Signals And The Dc Power-Bus In Multilayer Pcbs, Chen Wang, Marco Leone, James L. Drewniak, Antonio Orlandi May 2005

Coupling Between Differential Signals And The Dc Power-Bus In Multilayer Pcbs, Chen Wang, Marco Leone, James L. Drewniak, Antonio Orlandi

Electrical and Computer Engineering Faculty Research & Creative Works

Differential and common-mode transfer impedances are proposed herein to analyze noise coupled to (from) the dc power-bus from (to) via transitions in differential signals. Expressions for the two transfer impedances in terms of conventional single-ended transfer impedances are derived and verified through measurements, full-wave finite-difference time-domain (FDTD) simulations and an analytical cavity model. Some properties of the differential and common-mode transfer impedances are investigated to facilitate engineering design. The impact of signal current imbalances on power-bus noise and the benefit of differential signals as compared to single-ended signals are quantified.


Traces In Proximity To Gaps In Return Planes, Todd H. Hubing, Thomas Van Doren, Theodore M. Zeeff Jan 2005

Traces In Proximity To Gaps In Return Planes, Todd H. Hubing, Thomas Van Doren, Theodore M. Zeeff

Electrical and Computer Engineering Faculty Research & Creative Works

Coupling between circuitry on printed circuit boards can be mitigated by a variety of well-known techniques. One such technique is to isolate circuitry in different areas of the printed circuit board by strategically placing a gap in the signal return plane. However, this technique is only effective at reducing common-impedance coupling, which is generally not a significant coupling mechanism at frequencies above 1 MHz. This paper investigates the effect of a gap located between and parallel to adjacent microstrip traces. The effect of the gap on the mutual inductance and mutual capacitance is evaluated. Laboratory measurements and numerical simulations show …