Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Thermal Management Using Mems Bimorph Cantilever Beams, Ronald A. Coutu Jr., R. S. Lafleur, J. P.K. Walton, Lavern A. Starman Sep 2016

Thermal Management Using Mems Bimorph Cantilever Beams, Ronald A. Coutu Jr., R. S. Lafleur, J. P.K. Walton, Lavern A. Starman

Electrical and Computer Engineering Faculty Research and Publications

This paper examines a passive cooling technique using microelectromechanical systems (MEMS) for localized thermal management of electronic devices. The prototype was designed using analytic equations, simulated using finite element methods (FEM), and fabricated using the commercial PolyMUMPs™ process. The system consisted of an electronic device simulator (EDS) and MEMS bimorph cantilever beams (MBCB) array with beams lengths of 200, 250, and 300 μm that were tested to characterize deflection and thermal behavior. The specific beam lengths were chosen to actuate in response to heating associated with the EDS (i.e. the longest beams actuated first corresponding to the hottest portion of …


Mems-Based Terahertz Photoacoustic Chemical Sensing System, Nathan Glauvitz, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie Aug 2016

Mems-Based Terahertz Photoacoustic Chemical Sensing System, Nathan Glauvitz, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie

Electrical and Computer Engineering Faculty Research and Publications

Advancements in microelectromechanical system (MEMS) technology over the last several decades has been a driving force behind miniaturizing and improving sensor designs. In this work, a specialized cantilever pressure sensor was designed, modeled, and fabricated to investigate the photoacoustic (PA) response of gases to terahertz (THz) radiation under low-vacuum conditions associated with high-resolution spectroscopy. Microfabricated cantilever devices made using silicon-on-insulator (SOI) wafers were tested in a custom-built test chamber in this first ever demonstration of a cantilever-based PA chemical sensor and spectroscopy system in the THz frequency regime. The THz radiation source was amplitude modulated to excite acoustic waves in …


Analytical Modeling Of A Novel Microdisk Resonator For Liquid-Phase Sensing: An All-Shear Interaction Device (Asid), Mohamad Sadegh Sotoudegan Jul 2016

Analytical Modeling Of A Novel Microdisk Resonator For Liquid-Phase Sensing: An All-Shear Interaction Device (Asid), Mohamad Sadegh Sotoudegan

Dissertations (1934 -)

Extensive research on micro/nanomechanical resonators has been performed recently due to their potential to serve as ultra-sensitive devices in chemical/biosensing. These applications often necessitate liquid-phase sensing, introducing significant fluid-induced inertia and energy dissipation that reduces the resonator’s performance. To minimize the detrimental fluid effects on such devices, a novel microdisk resonator supported by two tangentially-oriented, axially-driven “legs” is investigated analytically and effects of the system parameters on the resonator/sensor performance are explored. Since the device surface vibrates primarily parallel to the fluid-structure interface, it is referred to here as an “all-shear interaction device,” or ASID. Analytical modeling of the ASID …


Thermal Microfluidic Devices; Design, Fabrication And Applications, Benyamin Davaji Apr 2016

Thermal Microfluidic Devices; Design, Fabrication And Applications, Benyamin Davaji

Dissertations (1934 -)

This thesis investigates the thermal actuation and temperature measurement methods in microfluidic devices. We designed and fabricated microfluidic devices with various functionalities such as: bio sensing, particle counting, microscale calorimetry, and cellular temperature measurement. All of these functionalities use thermal measurement methods. When quantitative measurements are required, the label-free nature of thermal measurement methods, along with its simple readout, make it a powerful candidate for lab on a chip and bio sensing/detection applications. In this work, thermal measurement methods are used to characterize bio-samples, measure concentrations, study thermal responses, and even perform particle cytometry. However, thermal measurement methods are known …


Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie Feb 2016

Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie

Electrical and Computer Engineering Faculty Research and Publications

In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever’s anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom …