Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Novel Test Fixture For Characterizing Mems Switch Microcontact Reliability And Performance, Protap Kumar Mahanta Jul 2022

Novel Test Fixture For Characterizing Mems Switch Microcontact Reliability And Performance, Protap Kumar Mahanta

Dissertations (1934 -)

Microelectromechanical systems (MEMS) switch is considered as a better alternative than the conventional solid-state DC and RF switches due to their low contact resistance approximately 1 Ω, near-zero power consumption approximately 0 W, low insertion loss approximately 0.2 dB, and high isolation approximately -30 dB. However, reliability is a great concern for them to be ubiquitously used by the industry for specific applications. Switching dynamics and microcontact surface physics play the critical role in determining their reliability. A simple, quick, and efficient test fixture is required to study the contact surface physics as well as to optimize the switching dynamics.In …


Low-Cost, Water Pressure Sensing And Leakage Detection Using Micromachined Membranes, Farhana Anwar Jul 2019

Low-Cost, Water Pressure Sensing And Leakage Detection Using Micromachined Membranes, Farhana Anwar

Master's Theses (2009 -)

This work presents the only known SOI membrane approach, using Microelectromechanical systems (MEMS) fabrication techniques, to address viable water leakage sensing requirements at low cost. In this research, membrane thickness and diameter are used in concert to target specific stiffness values that will result in targeted operational pressure ranges of approximately 0-120 psi. A MEMS membrane device constructed using silicon-on-insulator (SOI) wafers, has been tested and packaged for the water environment. MEMS membrane arrays will be used to determine operational pressure range by bursting.Two applications of these SOI membranes in aqueous environment are investigated in this research. The first …


Liquid Flowmeter Using Thermal Measurement; Design And Application, Woojae Chung Apr 2019

Liquid Flowmeter Using Thermal Measurement; Design And Application, Woojae Chung

Master's Theses (2009 -)

This thesis presents flowmeter devices which can measure flowrate, pressure and temperature offlowing liquid samples using thermal measurement method. Typical thermal mass flowmeter usesthermal properties of materials to obtain flow features only for gases. We designed and fabricatedflowmeter devices with various functionalities such as: measuring properties of flowing liquid andidentifying the type of liquid samples.Thermal measurement methods using temperature sensor is a key of our flowmeter’s workingprinciple. The thermal mass flowmeter consists of a glass capillary, a tungsten wire heater, and aresistance temperature detector (RTD) sensor. The heater and sensors are integrated on …


Analytical Modeling Of A Novel Microdisk Resonator For Liquid-Phase Sensing: An All-Shear Interaction Device (Asid), Mohamad Sadegh Sotoudegan Jul 2016

Analytical Modeling Of A Novel Microdisk Resonator For Liquid-Phase Sensing: An All-Shear Interaction Device (Asid), Mohamad Sadegh Sotoudegan

Dissertations (1934 -)

Extensive research on micro/nanomechanical resonators has been performed recently due to their potential to serve as ultra-sensitive devices in chemical/biosensing. These applications often necessitate liquid-phase sensing, introducing significant fluid-induced inertia and energy dissipation that reduces the resonator’s performance. To minimize the detrimental fluid effects on such devices, a novel microdisk resonator supported by two tangentially-oriented, axially-driven “legs” is investigated analytically and effects of the system parameters on the resonator/sensor performance are explored. Since the device surface vibrates primarily parallel to the fluid-structure interface, it is referred to here as an “all-shear interaction device,” or ASID. Analytical modeling of the ASID …


Thermal Microfluidic Devices; Design, Fabrication And Applications, Benyamin Davaji Apr 2016

Thermal Microfluidic Devices; Design, Fabrication And Applications, Benyamin Davaji

Dissertations (1934 -)

This thesis investigates the thermal actuation and temperature measurement methods in microfluidic devices. We designed and fabricated microfluidic devices with various functionalities such as: bio sensing, particle counting, microscale calorimetry, and cellular temperature measurement. All of these functionalities use thermal measurement methods. When quantitative measurements are required, the label-free nature of thermal measurement methods, along with its simple readout, make it a powerful candidate for lab on a chip and bio sensing/detection applications. In this work, thermal measurement methods are used to characterize bio-samples, measure concentrations, study thermal responses, and even perform particle cytometry. However, thermal measurement methods are known …


Design And Characterization Of A Low Cost Mems Imu Cluster For Precision Navigation, Daniel R. Greenheck Jul 2015

Design And Characterization Of A Low Cost Mems Imu Cluster For Precision Navigation, Daniel R. Greenheck

Master's Theses (2009 -)

The fast paced development of micro-electromechanical systems (MEMS) technology in recent years has resulted in the availability of low cost gyroscopes and accelerometers in commercial markets. These sensors can be integrated into a single device known as an inertial measurement unit (IMU). An IMU is capable of tracking and navigating a vehicle for a short period of time in the absence of external position and attitude updates. The precision of the manufacturing techniques used to fabricate commercial MEMS sensors as well as their mechanical nature result in noise and errors that limit their performance. It has been mathematically shown that …