Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Entire DC Network

Soybean Proteins Gmtic110 And Gmpsbp Are Crucial For Chloroplast Development And Function, Devinder Sandhu, Taylor Atkinson, Andrea Noll, Callie Johnson, Katherine Espinosa, Jessica Boelter, Stephanie Abel, Balpreet K. Dhatt, Terese Barta, Eric Singsaas, Sol Sepsenwol, A. Susana Goggi, Reid G. Palmer Nov 2016

Soybean Proteins Gmtic110 And Gmpsbp Are Crucial For Chloroplast Development And Function, Devinder Sandhu, Taylor Atkinson, Andrea Noll, Callie Johnson, Katherine Espinosa, Jessica Boelter, Stephanie Abel, Balpreet K. Dhatt, Terese Barta, Eric Singsaas, Sol Sepsenwol, A. Susana Goggi, Reid G. Palmer

Agronomy Publications

We have identified a viable-yellow and a lethal-yellow chlorophyll-deficient mutant in soybean. Segregation patterns suggested single-gene recessive inheritance for each mutant. The viable- and lethal-yellow plants showed significant reduction of chlorophyll aand b. Photochemical energy conversion efficiency and photochemical reflectance index were reduced in the viable-yellow plants relative to the wildtype, whereas the lethal-yellow plants showed no electron transport activity. The viable-yellow plants displayed reduced thylakoid stacking, while the lethal-yellow plants exhibited failure of proplastid differentiation into normal chloroplasts with grana. Genetic analysis revealed recessive epistatic interaction between the viable- and the lethal-yellow genes. The viable-yellow gene was mapped ...


Smos Optical Thickness Changes In Response To The Growth And Development Of Crops, Crop Management, And Weather, Brian K. Hornbuckle, Jason C. Patton, Andy Vanloocke, Andrew E. Suyker, Matthew C. Roby, Victoria A. Walker, Eswar R. Iyer, Daryl E. Herzmann, Erik A. Endacott Jul 2016

Smos Optical Thickness Changes In Response To The Growth And Development Of Crops, Crop Management, And Weather, Brian K. Hornbuckle, Jason C. Patton, Andy Vanloocke, Andrew E. Suyker, Matthew C. Roby, Victoria A. Walker, Eswar R. Iyer, Daryl E. Herzmann, Erik A. Endacott

Agronomy Publications

The Soil Moisture and Ocean Salinity (SMOS) remote sensing satellite was launched by the European Space Agency in 2009. The L-band brightness temperature observed by SMOS has been used to produce estimates of both soil moisture and τ, the optical thickness of the land surface. Although τ should theoretically be proportional to the amount of vegetation present within a SMOS pixel, several initial investigations have not been able to confirm this expected behavior. However, when the noise in the SMOS τ product is removed, τ in the U.S. Corn Belt, a region of extensive row-crop agriculture, has a distinct ...


Virus-Induced Gene Silencing And Transient Gene Expression In Soybean (Glycine Max) Using Bean Pod Mottle Virus Infectious Clones, Steven A. Whitham, Lori M. Lincoln, R. V. Chowda-Reddy, Jaime D. Dittman, Jamie A. O'Rourke, Michelle A. Graham Jun 2016

Virus-Induced Gene Silencing And Transient Gene Expression In Soybean (Glycine Max) Using Bean Pod Mottle Virus Infectious Clones, Steven A. Whitham, Lori M. Lincoln, R. V. Chowda-Reddy, Jaime D. Dittman, Jamie A. O'Rourke, Michelle A. Graham

Plant Pathology and Microbiology Publications

Virus-induced gene silencing (VIGS) is a powerful and rapid approach for determining the functions of plant genes. The basis of VIGS is that a viral genome is engineered so that it can carry fragments of plant genes, typically in the 200 to 300 base pair size range. The recombinant viruses are used to infect experimental plants, and wherever the virus invades, the target gene or genes will be silenced. VIGS is thus transient, and in the span of a few weeks, it is possible to design VIGS constructs and then generate loss-of-function phenotypes through RNA silencing of the target genes ...


The Effect Of Fungicides And Pod Removal Alone Or In Combination On Green Stem Disorder Of Soybean And Further Investigation Of Genetic Components, Xavier Phillips Jan 2016

The Effect Of Fungicides And Pod Removal Alone Or In Combination On Green Stem Disorder Of Soybean And Further Investigation Of Genetic Components, Xavier Phillips

Graduate Theses and Dissertations

Green stem disorder (GSD) of soybean (Glycine max L. Merr.) is when stems remain green and fleshy after pods reach physiological maturity and are ready to harvest. Little is known about GSD and its causes. Although GSD has not been shown to directly impact yield, the immature green stems may lead to harvest issues. Harvesting at the right time is essential to preserve the quality of the seed. During 2014 and 2015, field experiments located in central Iowa were used to investigate the effect of fungicides, pod removal, and their interaction on GSD incidence. The objective of this research was ...


Microscopic Characterization Of A Transposon-Induced Male-Sterile, Female-Sterile Mutant In Glycine Max L., Katherine A. Thilges Jan 2016

Microscopic Characterization Of A Transposon-Induced Male-Sterile, Female-Sterile Mutant In Glycine Max L., Katherine A. Thilges

Graduate Theses and Dissertations

A male-sterile, female-sterile mutant was identified in a transposon-tagging study in soybean (Glycine max L.). This mutant displayed abnormalities in both micro- and mega-sporogenesis, as well as gametogenesis. Vegetatively, the mutant showed no visible differences from the wild-type phenotype. Analyses of male meiotic chromosomes were done to better understand any issues that could occur to cause sterility. Wild-type and mutant anthers and ovules were cleared throughout their development, followed by confocal scanning laser microscopy to look for any abnormalities, and to determine the timing of abortion in both the male and female organs in the mutant. Additionally, scanning electron microscopy ...


Microscopic Characterization Of A Transposon-Induced Male-Sterile, Female-Sterile Mutant In Glycine Max L., Katherine A. Thilges Jan 2016

Microscopic Characterization Of A Transposon-Induced Male-Sterile, Female-Sterile Mutant In Glycine Max L., Katherine A. Thilges

Graduate Theses and Dissertations

A male-sterile, female-sterile mutant was identified in a transposon-tagging study in soybean (Glycine max L.). This mutant displayed abnormalities in both micro- and mega-sporogenesis, as well as gametogenesis. Vegetatively, the mutant showed no visible differences from the wild-type phenotype. Analyses of male meiotic chromosomes were done to better understand any issues that could occur to cause sterility. Wild-type and mutant anthers and ovules were cleared throughout their development, followed by confocal scanning laser microscopy to look for any abnormalities, and to determine the timing of abortion in both the male and female organs in the mutant. Additionally, scanning electron microscopy ...


Molecular Characterization Of Short And Long Term Iron Stress Responses In Soybean, Leorrie Ann Atencio Jan 2016

Molecular Characterization Of Short And Long Term Iron Stress Responses In Soybean, Leorrie Ann Atencio

Graduate Theses and Dissertations

Iron Deficiency Chlorosis (IDC) is a disease caused by lack of useable iron in the soil. Symptoms include stunting and interveinal chlorosis of the leaves, eventually leading to yield loss at the end of the season. IDC is particularly important in the upper Midwestern United States because soil conditions favor its development. With the use of next generation sequencing approaches, we characterized soybeans’ short and long-term response to iron stress. Our research takes advantage of two near isogenic lines that are 98% genetically identical but differ in their iron efficiency response. Clark plants are iron efficient, while Isoclark plants are ...


Soybean Vein Necrosis Virus: Impacts Of Infection On Yield Loss And Seed Quality And Expansion Of Plant Host Range, Melissa Irizarry Jan 2016

Soybean Vein Necrosis Virus: Impacts Of Infection On Yield Loss And Seed Quality And Expansion Of Plant Host Range, Melissa Irizarry

Graduate Theses and Dissertations

Soybean vein necrosis virus (SVNV) rapidly became a widespread soybean (Glycine max) virus within a few years of its initial confirmation in 2008. The economic impact of soybean vein necrosis (SVN) disease remains unknown. Soybean is a crop of global importance with nearly 4 billion bushels of soybeans produced in the United States in 2014. This study was designed to pursue two main questions; is there any yield loss or change in seed quality associated with SVN and are there horticultural or cover crop species that could be serving as sources of SVNV inoculum?

In order to determine if there ...


Rye Cover Crop Biomass, Nutrient Composition And Crop Management Practices To Enhance Corn Yield, Swetabh Patel Jan 2016

Rye Cover Crop Biomass, Nutrient Composition And Crop Management Practices To Enhance Corn Yield, Swetabh Patel

Graduate Theses and Dissertations

Winter cereal rye (Secale cereal L.), a commonly used cover crop in corn (Zea mays L.) systems has potential to scavenge soil NO3–N through a fibrous root system. The objective of this study was to quantify root and shoot biomass, C, and N partitioning in rye cover crop at the time of termination in spring. This was a one–year study conducted at a site with a no-till corn–soybean [Glycine max (L.) Merr.] rotation, rye drilled following grain crop harvest, and three N rates applied to corn (0, 135, and 225 kg N ha–1). Rye root biomass ...


Identification And Characterization Of Brown Stem Rot Resistance In Soybean, Chantal Elaine Mccabe Jan 2016

Identification And Characterization Of Brown Stem Rot Resistance In Soybean, Chantal Elaine Mccabe

Graduate Theses and Dissertations

Breeding for pathogen resistance is an important objective to improve and protect soybean yields. In 2010, 14.4% of total soybean yield was suppressed by diseases. Brown stem rot (BSR), caused by the fungus Phialophora gregata, reduces yield by as much as 38%. To date, three dominant BSR resistance genes have been identified: Rbs1, Rbs2, and Rbs3. The objectives of my research were 1) to determine if plant introductions contained novel BSR resistance genes, 2) to determine the correlation between P. gregata hyphae growth and foliar symptoms as well as characterize the response of the three BSR resistance genes to ...


Studies On Cover Crops And Sudden Death Syndrome Of Soybean, Renan Kobayashi-Leonel Jan 2016

Studies On Cover Crops And Sudden Death Syndrome Of Soybean, Renan Kobayashi-Leonel

Graduate Theses and Dissertations

Soybean sudden death syndrome (SDS), caused by Fusarium virguliforme, is a major soybean disease affecting soybean production in the United States. In search for more diversified cropping systems, the adoption of cover crops in the corn-soybean rotation is being encouraged. However, there is lack of information regarding the impact that cover cropping can have on SDS. On the one hand, it is possible that the improvements in soil health caused by cover crop can create an environment that is not favorable to the disease. On the other hand, F. virguliforme is able to colonize many plant species and, if a ...


Genome-Wide Association And Epistasis Studies Of Sclerotinia Sclerotiorum Resistance In Soybean, Tara Catherine Moellers Jan 2016

Genome-Wide Association And Epistasis Studies Of Sclerotinia Sclerotiorum Resistance In Soybean, Tara Catherine Moellers

Graduate Theses and Dissertations

Sclerotinia stem rot or white mold (WM) [Sclerotinia sclerotiorum (Lib.) de Bary] is an important fungal disease affecting soybean [Glycine max (L.) Merr.] and causes yield and quality losses. WM is prevalent in cool and moist environments, particularly in the soybean growing regions of Northern United States and Canada. Although sources of complete resistance have not yet been identified, several quantitative trait loci (QTL) for partial resistance have been reported but generally using bi-parental mapping populations. Genome-wide association (GWA) studies have been used to dissect complex disease resistance traits in plants and to identify the genes controlling the expression. WM ...


Modeling Long-Term Corn Yield Response To Nitrogen Rate And Crop Rotation, Laila A. Puntel, John E. Sawyer, Daniel Barker, Ranae N. Dietzel, Hanna Poffenbarger, Michael J. Castellano, Kenneth J. Moore, Peter Thorburn, Sotirios Archontoulis Jan 2016

Modeling Long-Term Corn Yield Response To Nitrogen Rate And Crop Rotation, Laila A. Puntel, John E. Sawyer, Daniel Barker, Ranae N. Dietzel, Hanna Poffenbarger, Michael J. Castellano, Kenneth J. Moore, Peter Thorburn, Sotirios Archontoulis

Agronomy Publications

Improved prediction of optimal N fertilizer rates for corn (Zea mays L.) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean (Glycine max L.) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha-1) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare ...


Candidate Perennial Bioenergy Grasses Have A Higher Albedo Than Annual Row Crops, Jesse N. Miller, Andy Vanloocke, Nuria Gomez-Casanovas, Carl J. Bernacchi Jan 2016

Candidate Perennial Bioenergy Grasses Have A Higher Albedo Than Annual Row Crops, Jesse N. Miller, Andy Vanloocke, Nuria Gomez-Casanovas, Carl J. Bernacchi

Agronomy Publications

The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observational and model-based approaches have investigated biogeochemical trade-offs, such as increased carbon sequestration and increased water use, associated with growing cellulosic feedstocks. A less understood aspect is the biogeophysical changes associated with the difference in albedo (a), which could alter the local energy balance and cause local to regional cooling several times larger than that associated with offsetting carbon. Here ...