Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Iowa State University

Plant Sciences

Soybean

Agronomy Publications

Articles 1 - 16 of 16

Full-Text Articles in Entire DC Network

Deconstructing The Genetic Architecture Of Iron Deficiency Chlorosis In Soybean Using Genome-Wide Approaches, Teshale Assefa, Jiaoping Zhang, R. V. Chowda-Reddy, Adrienne N. Moran Lauter, Arti Singh, Jamie A. O'Rourke, Michelle A. Graham, Asheesh K. Singh Jan 2020

Deconstructing The Genetic Architecture Of Iron Deficiency Chlorosis In Soybean Using Genome-Wide Approaches, Teshale Assefa, Jiaoping Zhang, R. V. Chowda-Reddy, Adrienne N. Moran Lauter, Arti Singh, Jamie A. O'Rourke, Michelle A. Graham, Asheesh K. Singh

Agronomy Publications

Background: Iron (Fe) is an essential micronutrient for plant growth and development. Iron deficiency chlorosis (IDC), caused by calcareous soils or high soil pH, can limit iron availability, negatively affecting soybean (Glycine max) yield. This study leverages genome-wide association study (GWAS) and a genome-wide epistatic study (GWES) with previous gene expression studies to identify regions of the soybean genome important in iron deficiency tolerance.

Results: A GWAS and a GWES were performed using 460 diverse soybean PI lines from 27 countries, in field and hydroponic iron stress conditions, using more than 36,000 single nucleotide polymorphism (SNP) markers. Combining this ...


Regenerating Agricultural Landscapes With Perennial Groundcover For Intensive Crop Production, Kenneth J. Moore, Robert P. Anex, Amani E. Elobeid, Shuizhang Fei, Cornelia B. Flora, A. Susana Goggi, Keri L. Jacobs, Prashant Jha, Amy L. Kaleita, Douglas L. Karlen, David A. Laird, Andrew W. Lenssen, Thomas Lubberstedt, Marshall D. Mcdaniel, D. Raj Raman, Sharon L. Weyers Jan 2019

Regenerating Agricultural Landscapes With Perennial Groundcover For Intensive Crop Production, Kenneth J. Moore, Robert P. Anex, Amani E. Elobeid, Shuizhang Fei, Cornelia B. Flora, A. Susana Goggi, Keri L. Jacobs, Prashant Jha, Amy L. Kaleita, Douglas L. Karlen, David A. Laird, Andrew W. Lenssen, Thomas Lubberstedt, Marshall D. Mcdaniel, D. Raj Raman, Sharon L. Weyers

Agronomy Publications

The Midwestern U.S. landscape is one of the most highly altered and intensively managed ecosystems in the country. The predominant crops grown are maize (Zea mays L.) and soybean [Glycine max (L.) Merr]. They are typically grown as monocrops in a simple yearly rotation or with multiple years of maize (2 to 3) followed by a single year of soybean. This system is highly productive because the crops and management systems have been well adapted to the regional growing conditions through substantial public and private investment. Furthermore, markets and supporting infrastructure are highly developed for both crops. As maize ...


Genetic Control And Geo-Climate Adaptation Of Pod Dehiscence Provide Novel Insights Into The Soybean Domestication And Expansion, Jiaoping Zhang, Asheesh K. Singh Aug 2018

Genetic Control And Geo-Climate Adaptation Of Pod Dehiscence Provide Novel Insights Into The Soybean Domestication And Expansion, Jiaoping Zhang, Asheesh K. Singh

Agronomy Publications

Loss of pod dehiscence is a key step during soybean [Glycine max (L.) Merr.] domestication. Genome-wide association analysis for soybean shattering identified loci harboring Pdh1, NST1A and SHAT1-5. Pairwise epistatic interactions were observed, and the dehiscent Pdh1 overcomes the resistance conferred by NST1A or SHAT1-5 locus, indicating that Pdh1 predominates pod dehiscence expression. Further candidate gene association analysis identified a nonsense mutation in NST1A associated with pod dehiscence. Allele composition and population differential analyses unraveled that Pdh1 and NST1A, but not SHAT1-5, underwent domestication and modern breeding selections. Geographic analysis showed that in Northeast China (NEC), indehiscence at both Pdh1 ...


Sifting And Winnowing: Analysis Of Farmer Field Data For Soybean In The Us North-Central Region, Spyridon Mourtzinis, Juan I. Rattalino Edreira, Patricio Grassini, Adam C. Roth, Shaun N. Casteel, Ignacio A. Ciampitti, Hans J. Kandel, Peter M. Kyveryga, Mark A. Licht, Laura E. Lindsey, Daren S. Mueller, Emerson D. Nafziger, Seth L. Naeve, Jordan Stanley, Michael J. Staton, Shawn P. Conley May 2018

Sifting And Winnowing: Analysis Of Farmer Field Data For Soybean In The Us North-Central Region, Spyridon Mourtzinis, Juan I. Rattalino Edreira, Patricio Grassini, Adam C. Roth, Shaun N. Casteel, Ignacio A. Ciampitti, Hans J. Kandel, Peter M. Kyveryga, Mark A. Licht, Laura E. Lindsey, Daren S. Mueller, Emerson D. Nafziger, Seth L. Naeve, Jordan Stanley, Michael J. Staton, Shawn P. Conley

Agronomy Publications

Field trials are commonly used to estimate the effects of different factors on crop yields. In the present study, we followed an alternative approach to identify factors that explain field-to-field yield variation, which consisted of farmer survey data, a spatial framework, and multiple statistical procedures. This approach was used to identify management factors with strongest association with on-farm soybean yield variation in the US North Central (NC) region. Field survey data, including yield and management information, were collected over two crop growing seasons (2014 and 2015) from rainfed and irrigated soybean fields (total of 3568 field-year observations). Fields were grouped ...


A Solution For Sampling Position Errors In Maize And Soybean Root Mass And Length Estimates, Raziel A. Ordonez, Michael J. Castellano, Jerry L. Hatfield, Mark A. Licht, Emily E. Wright, Sotirios V. Archontoulis May 2018

A Solution For Sampling Position Errors In Maize And Soybean Root Mass And Length Estimates, Raziel A. Ordonez, Michael J. Castellano, Jerry L. Hatfield, Mark A. Licht, Emily E. Wright, Sotirios V. Archontoulis

Agronomy Publications

Root mass and length attributes are difficult to obtain in the field and currently there is uniformity among literature studies in estimating the effect of sampling position error. With the objectives of 1) quantifying the sampling position error in calculating weighted average root values per unit area and 2) developing an algorithm to minimize root position sampling error so that existing data in the literature can be used in future studies, we collected and analyzed root mass and length data across four sampling positions (0, 12, 24 and 36 cm distance from the plant row; row-to-row spacing 76 cm) from ...


Assessing Causes Of Yield Gaps In Agricultural Areas With Diversity In Climate And Soils, Juan I. Rattalino Edreira, Spyridon Mourtzinis, Shawn P. Conley, Adam C. Roth, Ignacio A. Ciampitti, Mark A. Licht, Hans Kandel, Peter M. Kyveryga, Laura E. Lindsey, Daren S. Mueller, Seth L. Naeve, Emerson Nafziger, James E. Specht, Jordan Stanley, Michael J. Staton, Patricio Grassini Dec 2017

Assessing Causes Of Yield Gaps In Agricultural Areas With Diversity In Climate And Soils, Juan I. Rattalino Edreira, Spyridon Mourtzinis, Shawn P. Conley, Adam C. Roth, Ignacio A. Ciampitti, Mark A. Licht, Hans Kandel, Peter M. Kyveryga, Laura E. Lindsey, Daren S. Mueller, Seth L. Naeve, Emerson Nafziger, James E. Specht, Jordan Stanley, Michael J. Staton, Patricio Grassini

Agronomy Publications

Identification of causes of gaps between yield potential and producer yields has been restricted to small geographic areas. In the present study, we developed a novel approach for identifying causes of yield gaps over large agricultural areas with diversity in climate and soils. This approach was applied to quantify and explain yield gaps in rainfed and irrigated soybean in the North-Central USA (NC USA) region, which accounts for about one third of soybean global production. Survey data on yield and management were collected from 3568 producer fields over two crop seasons and grouped into 10 technology extrapolation domains (TEDs) according ...


Genetic Architecture Of Charcoal Rot (Macrophomina Phaseolina) Resistance In Soybean Revealed Using A Diverse Panel, Sara M. Coser, R. V. Chowda Reddy, Jiaoping Zhang, Daren S. Mueller, Alemu Mengistu, Kiersten A. Wise, Tom W. Allen, Arti Singh, Asheesh K. Singh Sep 2017

Genetic Architecture Of Charcoal Rot (Macrophomina Phaseolina) Resistance In Soybean Revealed Using A Diverse Panel, Sara M. Coser, R. V. Chowda Reddy, Jiaoping Zhang, Daren S. Mueller, Alemu Mengistu, Kiersten A. Wise, Tom W. Allen, Arti Singh, Asheesh K. Singh

Agronomy Publications

Charcoal rot (CR) disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methods available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient information available on the genetic mechanisms related to resistance. Genome-wide association studies (GWAS) enable unraveling the genetic architecture of resistance and identification of causal genes. The aims of this study were to identify new sources of resistance to CR in a collection of 459 diverse plant introductions from the USDA Soybean Germplasm Core Collection using field and ...


Isolation And Characterization Of The Aconitate Hydratase 4 (Aco4) Gene From Soybean, Z Coleman, J. Boelter, K. Espinosa, A. S. Goggi, R. G. Palmer, D. Sandhu Feb 2017

Isolation And Characterization Of The Aconitate Hydratase 4 (Aco4) Gene From Soybean, Z Coleman, J. Boelter, K. Espinosa, A. S. Goggi, R. G. Palmer, D. Sandhu

Agronomy Publications

Aconitase catalyzes the reversible isomerization of two tricarboxylic acids, citrate and isocitrate, during the Krebs cycle. Five aconitase genes, namely, Aco1, Aco2, Aco3, Aco4, and Aco5, have been identified in soybean. Previously, Aco4 was mapped on chromosome 11. The purpose of this investigation was to isolate and sequence the candidate gene for Aco4. We mapped the Aco4 gene to a 148 kb region on chromosome 11 that contained 19 predicted genes. One of these, Glyma.11G080600, codes for aconitate hydratase. Sequencing of two isozyme variants (A-line and B-line) for Glyma.11G080600 revealed three synonymous and two non-synonymous substitutions. Perhaps, the ...


Advancing Our Understanding Of Charcoal Rot In Soybeans, Martha P. Romero Luna, Daren Mueller, Alemu Mengistu, Asheesh K. Singh, Glen L. Hartman, Kiersten A. Wise Jan 2017

Advancing Our Understanding Of Charcoal Rot In Soybeans, Martha P. Romero Luna, Daren Mueller, Alemu Mengistu, Asheesh K. Singh, Glen L. Hartman, Kiersten A. Wise

Agronomy Publications

Charcoal rot [Macrophomina phaseolina (Tassi) Goid] of soybean [Glycine max (L.) Merr.] is an important but commonly misidentified disease, and very few summary articles exist on this pathosystem. Research conducted over the past 10 yr has improved our understanding of the environment conducive to disease development, host resistance, and improved disease diagnosis and management. This article summarizes the currently available research with an emphasis on disease management.


Soybean Proteins Gmtic110 And Gmpsbp Are Crucial For Chloroplast Development And Function, Devinder Sandhu, Taylor Atkinson, Andrea Noll, Callie Johnson, Katherine Espinosa, Jessica Boelter, Stephanie Abel, Balpreet K. Dhatt, Terese Barta, Eric Singsaas, Sol Sepsenwol, A. Susana Goggi, Reid G. Palmer Nov 2016

Soybean Proteins Gmtic110 And Gmpsbp Are Crucial For Chloroplast Development And Function, Devinder Sandhu, Taylor Atkinson, Andrea Noll, Callie Johnson, Katherine Espinosa, Jessica Boelter, Stephanie Abel, Balpreet K. Dhatt, Terese Barta, Eric Singsaas, Sol Sepsenwol, A. Susana Goggi, Reid G. Palmer

Agronomy Publications

We have identified a viable-yellow and a lethal-yellow chlorophyll-deficient mutant in soybean. Segregation patterns suggested single-gene recessive inheritance for each mutant. The viable- and lethal-yellow plants showed significant reduction of chlorophyll aand b. Photochemical energy conversion efficiency and photochemical reflectance index were reduced in the viable-yellow plants relative to the wildtype, whereas the lethal-yellow plants showed no electron transport activity. The viable-yellow plants displayed reduced thylakoid stacking, while the lethal-yellow plants exhibited failure of proplastid differentiation into normal chloroplasts with grana. Genetic analysis revealed recessive epistatic interaction between the viable- and the lethal-yellow genes. The viable-yellow gene was mapped ...


Modeling Long-Term Corn Yield Response To Nitrogen Rate And Crop Rotation, Laila A. Puntel, John E. Sawyer, Daniel Barker, Ranae N. Dietzel, Hanna Poffenbarger, Michael J. Castellano, Kenneth J. Moore, Peter Thorburn, Sotirios Archontoulis Jan 2016

Modeling Long-Term Corn Yield Response To Nitrogen Rate And Crop Rotation, Laila A. Puntel, John E. Sawyer, Daniel Barker, Ranae N. Dietzel, Hanna Poffenbarger, Michael J. Castellano, Kenneth J. Moore, Peter Thorburn, Sotirios Archontoulis

Agronomy Publications

Improved prediction of optimal N fertilizer rates for corn (Zea mays L.) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean (Glycine max L.) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha-1) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare ...


Candidate Perennial Bioenergy Grasses Have A Higher Albedo Than Annual Row Crops, Jesse N. Miller, Andy Vanloocke, Nuria Gomez-Casanovas, Carl J. Bernacchi Jan 2016

Candidate Perennial Bioenergy Grasses Have A Higher Albedo Than Annual Row Crops, Jesse N. Miller, Andy Vanloocke, Nuria Gomez-Casanovas, Carl J. Bernacchi

Agronomy Publications

The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observational and model-based approaches have investigated biogeochemical trade-offs, such as increased carbon sequestration and increased water use, associated with growing cellulosic feedstocks. A less understood aspect is the biogeophysical changes associated with the difference in albedo (a), which could alter the local energy balance and cause local to regional cooling several times larger than that associated with offsetting carbon. Here ...


Evaluation Of Spontaneous Generation Of Allelic Variation In Soybean In Response To Sexual Hybridization And Stress, Katherine Espinosa, Jessica Boelter, Susan Lolle, Marianne Hopkins, Susana Goggi, Reid G. Palmer, Devinder Sandhu Mar 2015

Evaluation Of Spontaneous Generation Of Allelic Variation In Soybean In Response To Sexual Hybridization And Stress, Katherine Espinosa, Jessica Boelter, Susan Lolle, Marianne Hopkins, Susana Goggi, Reid G. Palmer, Devinder Sandhu

Agronomy Publications

Intra-cultivar variation reported in pure lines of soybean has been hypothesized to result from genetic mechanisms contributing to de novo genetic variation. In this study we have detected allele switching by following segregation pattern of Aconitase-4 isozyme in sexual crosses and pure lines. In sexual crosses, one F2 plant showed switch at the Aconitase- 4 (Aco4) locus from the expected heterozygous genotype Aco4-ac to Aco4-ab. In the pure lines grown in a honeycomb planting design and treated with an accelerated aging test, multiple cases of allele switching were detected at the Aco4 locus. Both single and double switches were detected ...


Candidate Gene Identification For A Lethal Chlorophyll-Deficient Mutant In Soybean, Sam Reed, Taylor Atkinson, Carly Gorecki, Katherine Espinosa, Sarah Przybylski, Alcira Susana Goggi, Reid G. Palmer, Devinder Sandhu Jan 2014

Candidate Gene Identification For A Lethal Chlorophyll-Deficient Mutant In Soybean, Sam Reed, Taylor Atkinson, Carly Gorecki, Katherine Espinosa, Sarah Przybylski, Alcira Susana Goggi, Reid G. Palmer, Devinder Sandhu

Agronomy Publications

Chlorophyll-deficient mutants have been studied persistently to understand genetic mechanisms controlling metabolic pathways. A spontaneous chlorophyll-deficient lethal mutant was observed in self-pollinated progeny of a soybean cultivar “BSR 101”. Observed segregation patterns indicated single-gene recessive inheritance for this lethal-yellow mutant. The objectives of this investigation were to develop a genetic linkage map of the region containing the lethal-yellow (YL_PR350) gene and identify putative candidate genes for this locus. The YL_PR350 gene was mapped to chromosome 15 and is flanked by BARCSOYSSR_15_1591 and BARCSOYSSR_15_1597. This region physically spans ~153 kb and there are 14 predicted genes that lie in this region ...


Reduction In Common Milkweed (Asclepias Syriaca) Occurrence In Iowa Cropland From 1999 To 2009, Robert G. Hartzler Dec 2010

Reduction In Common Milkweed (Asclepias Syriaca) Occurrence In Iowa Cropland From 1999 To 2009, Robert G. Hartzler

Agronomy Publications

The role of common milkweed in the lifecycle of the monarch butterfly has increased interest in the presence of this weed in the north central United States. An initial survey conducted in 1999 found that low densities of common milkweed occurred in approximately 50% of Iowa corn and soybean fields. In 2009, common milkweed was present in only 8% of surveyed fields, and the area within infested fields occupied by common milkweed was reduced by approximately 90% compared to 1999. The widespread adoption of glyphosate resistant corn and soybean cultivars and the reliance on post-emergence applications of glyphosate for weed ...


Light Is Essential For Degradation Of Ribulose-1,5-Bisphosphate Carboxylase-Oxygenase Large Subunit During Sudden Death Syndrome Development In Soybean, J. Ji, M. P. Scott, M. K. Bhattacharyya Jan 2006

Light Is Essential For Degradation Of Ribulose-1,5-Bisphosphate Carboxylase-Oxygenase Large Subunit During Sudden Death Syndrome Development In Soybean, J. Ji, M. P. Scott, M. K. Bhattacharyya

Agronomy Publications

Fusarium solani f. sp. glycines (Fsg) has been reported to produce at least two phytotoxins. Cell-free Fsg culture filtrates containing phytotoxins have been shown to develop foliar sudden death syndrome (SDS) in soybean. We have investigated the changes in protein profiles of diseased leaves caused by cell-free Fsg culture filtrates prepared from Fsg isolates. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) was conducted to investigate the protein profiles of diseased and healthy leaves. An approximately 55 kDa protein was found to be absent in diseased leaves. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometric analyses and a database search revealed that the ...