Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Dead Zones In Porous Catalysts: Concentration Profiles And Efficiency Factors, Roger L. York, Kaitlin M. Bratlie, Lloyd R. Hile, Larry K. Jang Jan 2011

Dead Zones In Porous Catalysts: Concentration Profiles And Efficiency Factors, Roger L. York, Kaitlin M. Bratlie, Lloyd R. Hile, Larry K. Jang

Kaitlin M. Bratlie

This paper examines the conditions under which a dead zone, or a portion of the catalyst devoid of reactant, can form in a porous catalyst in which simultaneous reaction and diffusion are occurring. The condition that allows for the existence of a dead zone is defined by a critical Thiele modulus. When the Thiele modulus - the ratio of chemical reaction to diffusion - is greater than the critical Thiele modulus, a dead zone exists. This dead zone can be mathematically defined by a change of boundary conditions. We examine nth order reactions in isothermal infinite slabs, infinite cylinders, and …


Rapid Biocompatibility Analysis Of Materials Via In Vivo Fluorescence Imaging Of Mouse Models, Kaitlin M. Bratlie, Tram T. Dang, Stephen Lyle, Matthias Nahrendorf, Ralph Weissleder, Robert Langer, Daniel G. Anderson Apr 2010

Rapid Biocompatibility Analysis Of Materials Via In Vivo Fluorescence Imaging Of Mouse Models, Kaitlin M. Bratlie, Tram T. Dang, Stephen Lyle, Matthias Nahrendorf, Ralph Weissleder, Robert Langer, Daniel G. Anderson

Kaitlin M. Bratlie

Background: Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis. Methodology/Principal Findings: Here we develop rapid, non-invasive methods for in vivo quantification of the inflammatory response to implanted biomaterials. Materials were placed subcutaneously in an array format and monitored for host responses as per ISO 10993-6: 2001. Host cell activity in response to these materials was imaged kinetically, in vivo using fluorescent whole animal imaging. Data captured using whole animal …