Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Brigham Young University

2015

Finite element analysis

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Numerical Analysis Of Passive Force On Skewed Bridge Abutments, Zifan Guo Dec 2015

Numerical Analysis Of Passive Force On Skewed Bridge Abutments, Zifan Guo

Theses and Dissertations

Accounting for seismic forces and thermal expansion in bridge design requires an accurate passive force-deflection relationship for the abutment wall. Current design codes make no allowance for skew effects on passive force; however, large scale field tests indicate that there is a substantial reduction in peak passive force as skew angle increases. A reduction in passive force also reduces the transverse shear resistance on the abutment. The purpose of this study is to validate three-dimensional model using PLAXIS 3D, against large scale test results performed at Brigham Young University and to develop a set of calibrated finite element models. The …


Ligament Model Fidelity In Finite Element Analysis Of The Human Lumbar Spine, Mitchell Scott Hortin May 2015

Ligament Model Fidelity In Finite Element Analysis Of The Human Lumbar Spine, Mitchell Scott Hortin

Theses and Dissertations

The purpose of this project is to quantify the effects of increasing spinal ligament fidelity on the mechanics of the human lumbar spine using finite element analysis (FEA). In support of this goal, a material characterization study was completed to provide anisotropic, nonlinear material parameters for the human anterior longitudinal ligament. (ALL). Cadaveric samples of the human ALL were tested using a punch test technique. Multi- axial force-deformation data were gathered and fit to a commonly used transversely isotropic material model using an FEA system identification routine. The resulting material parameters produced a curve that correlated well with the experimental …


Modeling Stokes Flow Using Hierarchical Structure-Preserving B-Splines, Kendrick Monroe Shepherd Mar 2015

Modeling Stokes Flow Using Hierarchical Structure-Preserving B-Splines, Kendrick Monroe Shepherd

Theses and Dissertations

A new spline space, the hierarchical structure-preserving B-spline space, is introduced and implemented in the analysis of Stokes flow. The space, when properly constrained, is shown to be stable and to have at least optimal convergence rates in the velocity field and suboptimal convergence rates in the pressure field. However, results show that superoptimal convergence can often be expected in the pressure field, likely due to error reduction in the velocity field. Like other hierarchical spline spaces, these splines are shown to greatly increase accuracy and to drastically lower computation times for analyses on domains whose solution fields have singularities …