Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Velocity And Temperature Characterization Of The First Vacuum Stage Expansion In An Inductively Coupled Plasma - Mass Spectrometer, William Neil Radicic May 2004

Velocity And Temperature Characterization Of The First Vacuum Stage Expansion In An Inductively Coupled Plasma - Mass Spectrometer, William Neil Radicic

Theses and Dissertations

The inductively coupled plasma - mass spectrometer (ICP-MS) is the analytical instrument of choice for trace element detection and quantification. Despite the popularity of ICP-MS, significant degradation in sensitivity and precision occurs as the result of matrix and instrument-induced effects. The sources of these effects are not well understood, characterized, or correlated to particular plasma operating condition settings or matrix compositions and involve both neutral and charged species. The purpose of this study is to characterize the behavior of metastable Ar (I) atom and Ca (II) ion through the measurement of Doppler velocities and fluorescence line width "temperatures."

For the …


Derivation Of Moving-Coil Loudspeaker Parameters Using Plane Wave Tube Techniques, Brian Eric Anderson Jan 2004

Derivation Of Moving-Coil Loudspeaker Parameters Using Plane Wave Tube Techniques, Brian Eric Anderson

Theses and Dissertations

Small-signal moving-coil loudspeaker driver parameters are traditionally derived through electrical impedance measurement techniques. These parameters are commonly called Thiele/Small parameters, after Neville Thiele and Richard Small who are credited with developing industry-standard loudspeaker modeling techniques. However, because loudspeaker drivers are electro-mechano-acoustical transducers, it should be possible to measure their parameters in physical domains other than the electrical domain. A method of measuring loudspeaker parameters from the acoustical domain will be developed. The technique uses a plane wave tube to measure acoustical properties of a baffled driver under test. Quantities such as the transmission loss through the driver are measured for …