Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Entire DC Network

Numerical Study Of The Time-Periodic Electroosmotic Flow Of Viscoelastic Fluid Through A Short Constriction Microchannel, Jianyu Ji, Shizhi Qian, Armani Marie Parker, Xiaoyu Zhang Jan 2023

Numerical Study Of The Time-Periodic Electroosmotic Flow Of Viscoelastic Fluid Through A Short Constriction Microchannel, Jianyu Ji, Shizhi Qian, Armani Marie Parker, Xiaoyu Zhang

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) is of utmost significance due to its numerous practical uses in controlling flow at micro/nanoscales. In the present study, the time-periodic EOF of a viscoelastic fluid is statistically analyzed using a short 10:1 constriction microfluidic channel joining two reservoirs on either side. The flow is modeled using the Oldroyd-B (OB) model and the Poisson-Boltzmann model. The EOF of a highly concentrated polyacrylamide (PAA) aqueous solution is investigated under the combined effects of an alternating current (AC) electric field and a direct current (DC) electric field. Power-law degradation is visible in the energy spectra of the velocity fluctuations …


Simulation Of Droplet Impacting A Square Solid Obstacle In Microchannel With Different Wettability By Using High Density Ratio Pseudopotential Multiplerelaxation- Time (Mrt) Lattice Boltzmann Method (Lbm), Wandong Zhao, Ying Zhang, Wenqiang Shang, Zhaotai Wang, Ben Xu, Shuisheng Jiang Jan 2019

Simulation Of Droplet Impacting A Square Solid Obstacle In Microchannel With Different Wettability By Using High Density Ratio Pseudopotential Multiplerelaxation- Time (Mrt) Lattice Boltzmann Method (Lbm), Wandong Zhao, Ying Zhang, Wenqiang Shang, Zhaotai Wang, Ben Xu, Shuisheng Jiang

Mechanical Engineering Faculty Publications and Presentations

In this paper, a pseudopotential high density ratio (DR) lattice Boltzmann Model was developed by incorporating multi-relaxation-time (MRT) collision matrix, large DR external force term, surface tension adjustment external force term and solid-liquid pseudopotential force. It was found that the improved model can precisely capture the two-phase interface at high DR. Besides, the effects of initial Reynolds number, Weber number, solid wall contact angle (CA), ratio of obstacle size to droplet diameter ( 1 χ ), ratio of channel width to droplet diameter ( 2 χ ) on the deformation and breakup of droplet when impacting on a square obstacle …


Enhance Flow Boiling In Microchannels By Regulating Two-Phase Transport Patterns, Wenming Li Jan 2018

Enhance Flow Boiling In Microchannels By Regulating Two-Phase Transport Patterns, Wenming Li

Theses and Dissertations

Flow boiling in microchannels is one of the most promising cooling techniques for microelectronics. Using latent heat by vaporization can significantly improve heat dissipation of high power density electronic devices. Most of the failure of electronic devices is induced by the occurrence of critical heat flux (CHF), which defines the maximum operating conditions. However, the vigorous rapid generation of vapor through phase change leads to chaotic two-phase flows in microchannels, resulting in flowinstability in terms of severe flow, temperature and pressure drop fluctuations. Particularly, the very well-known bubble confinement exacerbates the two-phase flow instabilities and greatly deteriorates heat transfer performance …


Characterization Of Thermoplastic Fusion Bonding Of Microchannels Using Pressure Assisted Boiling Point Control System, Kavya Dathathreya Jan 2016

Characterization Of Thermoplastic Fusion Bonding Of Microchannels Using Pressure Assisted Boiling Point Control System, Kavya Dathathreya

LSU Master's Theses

An innovative method of thermoplastic fusion bonding using a pressure assisted boiling point control (PABP) system was characterized to determine the optimum parameters for bonding polymethyl methacrylate (PMMA) components containing microchannels and thin, 250 µm cover sheets. The PABP system enables precise control of the temperature boundary condition and the applied pressure by immersing the components being bonded in boiling water and varying the vapor pressure. Test structure geometries containing microchannels of two depths and four different aspect ratios were designed: 1:10 (Depth: 10µm, Width: 100 µm and Depth: 5µm, Width: 50 µm), 1:50 (Depth: 10µm, Width: 500µm and Depth: …


Electrohydrodynamic Manipulation Of Liquid Droplet Emulsions In A Microfluidic Channel, Jonathan Wehking Jan 2013

Electrohydrodynamic Manipulation Of Liquid Droplet Emulsions In A Microfluidic Channel, Jonathan Wehking

Electronic Theses and Dissertations

This work specifically aims to provide a fundamental framework, with some experimental validation, for understanding droplet emulsion dynamics in a microfluidic channel with an applied electric field. Electrification of fluids can result in several different modes of electrohydrodynamics (EHD). Several studies to date have provided theoretical, experimental, and numerical results for stationary droplet deformations and some flowing droplet configurations, but none have reported a method by which droplets of different diameters can be separated, binned and routed through the use of electric fields. It is therefore the goal of this work to fill that void and report a comprehensive understanding …


Advanced Thermal Models For Improved Design Of Counter Flow Microchannel Heat Exchangers, Bobby Mathew Apr 2011

Advanced Thermal Models For Improved Design Of Counter Flow Microchannel Heat Exchangers, Bobby Mathew

Doctoral Dissertations

Theoretical models of counter flow microchannel heat exchangers subjected to scaling and secondary effects are developed in this dissertation. The scaling effects studied include axial heat conduction and viscous dissipation, while the secondary effects considered in this dissertation is that of external heat transfer via heat flux and temperature. The theoretical models developed are one-dimensional and consist primarily of ordinary governing equations that describe the axial variation of hot and cold fluid. For the case of axial heat conduction, the axial variation of wall temperature is also modeled. The models are dependent on various factors, such as Reynolds number, Prandtl …


Experimental Investigation Of Flow And Heat Transfer Characteristics Of R -134a In Microchannels, Abdullahel Bari Apr 2010

Experimental Investigation Of Flow And Heat Transfer Characteristics Of R -134a In Microchannels, Abdullahel Bari

Doctoral Dissertations

The purpose of this study was to investigate the flow and heat transfer characteristics of liquid refrigerant R-134a in rectangular microchannels. The research concentrated mostly upon single-phase experiments with limited investigation of boiling phenomenon in microchannels. Tests were performed using rectangular microchannels with hydraulic diameters ranging from 112 μm to 210 μm and aspect ratios varying approximately from 1.0 to 1.5. The Reynolds number in the experiments ranged from 1,200 to 13,000 although most data were collected in the transition and turbulent flow regimes.

The experimental data for friction factor measurement had a similar trend as predicted by macroscale theory …


Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian Jun 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian

Mechanical Engineering Faculty Research

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier–Stokes and continuity equations using the arbitrary Lagrangian–Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle’s initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then …


Laminar And Turbulent Flow Of A Liquid Through Channels With Superhydrophobic Walls Exhibiting Alternating Ribs And Cavities, Brady L. Woolford Mar 2009

Laminar And Turbulent Flow Of A Liquid Through Channels With Superhydrophobic Walls Exhibiting Alternating Ribs And Cavities, Brady L. Woolford

Theses and Dissertations

There is significant interest in reducing the frictional resistance that occurs along a surface in contact with a liquid. A novel approach to reducing the frictional resistance across a liquid-solid interface is the use of superhydrophobic surfaces. superhydrophobic surfaces are created in this work by the use of micro-fabrication techniques where systematic roughness is fabricated on a substrate surface which is subsequently treated with a hydrophobic coating. This work reports an experimental study of superhydrophobic surfaces used to reduce drag in both laminar and turbulent channel flows. In the laminar flow regime reductions in frictional resistance greater than 55% were …


Pressure Losses Experienced By Liquid Flow Through Pdms Microchannels With Abrupt Area Changes, Jonathan Wehking Jan 2008

Pressure Losses Experienced By Liquid Flow Through Pdms Microchannels With Abrupt Area Changes, Jonathan Wehking

Electronic Theses and Dissertations

Given the surmounting disagreement amongst researchers in the area of liquid flow behavior at the microscale for the past thirty years, this work presents a fundamental approach to analyzing the pressure losses experienced by the laminar flow of water (Re = 7 to Re = 130) through both rectangular straight duct microchannels (of widths ranging from 50 to 130 micrometers), and microchannels with sudden expansions and contractions (with area ratios ranging from 0.4 to 1.0) all with a constant depth of 104 micrometers. The simplified Bernoulli equations for uniform, steady, incompressible, internal duct flow were used to compare flow through …


Experimental Investigation Of Heat Transfer Rate In Micro-Channels, Pritish Ranjan Parida Jan 2007

Experimental Investigation Of Heat Transfer Rate In Micro-Channels, Pritish Ranjan Parida

LSU Master's Theses

Metal-based MHEs are of current interest due to the combination of high heat transfer performance and improved mechanical integrity. Efficient methods for fabrication and assembly of functional metal-based MHEs are essential to ensure the economic viability of such devices. The present study focuses on the results of heat transfer testing of assembled Cu- and Al- based microchannel heat exchanger (MHE) prototypes. Efficient fabrication of Cu- and Al- based high-aspect-ratio microscale structures (HARMS) have been achieved through molding replication using surface engineered, metallic mold inserts. Replicated metallic HARMS were assembled through eutectic bonding to form entirely Cu- and Al- based MHE …


Micron-Level Actuator For Thermal-Fluid Control In Microchannels, Nurhak Erbas Jul 2006

Micron-Level Actuator For Thermal-Fluid Control In Microchannels, Nurhak Erbas

Mechanical & Aerospace Engineering Theses & Dissertations

Effectiveness of an actuator is investigated for thermal-flow control in microchannels. First, simulations of a single actuator in a quiescent external medium are performed in order to study the parameters characterizing the synthetic jet flow from the actuator. For this purpose, a simplified, two-dimensional configuration is considered. The membrane motion is modeled in a realistic manner as a moving boundary in order to accurately compute the flow inside the actuator cavity. The geometric and actuation parameters of the actuator are investigated to define the effectiveness of the jet flow. The study is done initially at macro scales. Then, the flow …


Analysis Of Viscous Drag Reduction And Thermal Transport Effects For Microengineered Ultrahydrophobic Surfaces, Jason W. Davies Mar 2006

Analysis Of Viscous Drag Reduction And Thermal Transport Effects For Microengineered Ultrahydrophobic Surfaces, Jason W. Davies

Theses and Dissertations

One approach recently proposed for reducing the frictional resistance to liquid flow in microchannels is the patterning of micro-ribs and cavities on the channel walls. When treated with a hydrophobic coating, the liquid flowing in the microchannel wets only the top surfaces of the ribs, and does not penetrate into the cavities, provided the pressure is not too high. The net result is a reduction in the surface contact area between channel walls and the flowing liquid. For micro-ribs and cavities that are aligned normal to the channel axis (principal flow direction), these micropatterns form a repeating, periodic structure. This …


Two-Phase Flow In High Aspect Ratio, Polymer Microchannels For Reagent Delivery Applications, Estelle Evans Jan 2006

Two-Phase Flow In High Aspect Ratio, Polymer Microchannels For Reagent Delivery Applications, Estelle Evans

LSU Master's Theses

Multiphase flow in microfluidics is an increasingly growing field, especially in biotechnology. For instance, a steady-state slug flow would benefit lab-on-a-chip drug delivery methods. This flow would not only use minute amounts of reagents, but it would also decrease the sample processing time. Thus, researching a steady-state plug flow in a microchannel is beneficial to the drug delivery field. Five PMMA, directly-milled microchannels [2: Aspect Ratio 1 (with and without pressure ports, 2): Aspect ratio 2 (with and without pressure ports), and 1: Aspect Ratio 3 (without pressure ports)] were manufactured. These channels were then cleaned, and a PMMA cover …


Microparticle Influenced Electroosmotic Flow, John M. Young May 2005

Microparticle Influenced Electroosmotic Flow, John M. Young

Theses and Dissertations

The influence of microparticles on electroosmotic flow was investigated experimentally and numerically. Experiments were conducted using four different particle types of varying chemical composition, surface charge and polarity. Each particle type was tested at five different volume fractions ranging from 0.001 – 0.025. With a constant applied electric field, positively charged particles enhanced the electroosmotic flow by as much as 850%. The enhancement depended on particle composition, size and concentration. For negatively charged particles, the bulk electroosmotic flow was retarded with the largest reductions being 35%. This occurred for the greatest negative paricle concentration studied. A final experimental study utilizing …


Development Of A Novel Microreactor For Improved Chemical Reaction Conversion, Yu Liang Apr 2005

Development Of A Novel Microreactor For Improved Chemical Reaction Conversion, Yu Liang

Doctoral Dissertations

Microreactors have been widely studied over the past two decades for different chemical reactions, to develop new analytical capabilities, and to obtain high mixing performance in the reactors. The main objectives of this work are to investigate the effect of different microchannel structures on the fluid properties and mixing behavior in microreactors, and to design, fabricate, and test a novel microreactor for higher conversion in a chemical reaction. The development of this novel microreactor is intended to provide a valuable guideline in achieving enhanced chemical mixing and to make available a solid research base for optimization of the yield of …


Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black Jul 2000

Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black

Doctoral Dissertations

In this study free molecular flow in a micro-channel was modeled using a stochastic approach, namely the Kolmogorov forward equation in three dimensions. Model equations were discretized using Central Difference and Backward Difference methods and solved using the Jacobi method. Parameters were used that reflect the characteristic geometry of experimental work performed at the Louisiana Tech University Institute for Micromanufacturing.

The solution to the model equations provided the probability density function of the distance traveled by a particle in the micro-channel. From this distribution we obtained the distribution of the residence time of a particle in the micro-channel. Knowledge of …