Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Entire DC Network

Assessing The Lubrication Performance Of Sunflower Oil Modified With Montmorillonite Clay (Mmt) Nanoparticles For Industrial Applications, Md Mashfiqur Rahman, Md Abu Sayeed Biswas, Laura Peña-Pará, Demófilo Maldonado- Cortés, Javier A. Ortega Feb 2024

Assessing The Lubrication Performance Of Sunflower Oil Modified With Montmorillonite Clay (Mmt) Nanoparticles For Industrial Applications, Md Mashfiqur Rahman, Md Abu Sayeed Biswas, Laura Peña-Pará, Demófilo Maldonado- Cortés, Javier A. Ortega

Mechanical Engineering Faculty Publications and Presentations

Because of the environmental impact and price volatility, there has been a growing concern about using petroleum-based lubricants. This issue has encouraged research into the development of biodegradable lubricants like vegetable oils. This study assessed the tribological behavior of sunflower oil modified with Montmorillonite nanoclay (MMT) as lubricant additives. A block-on-ring tribometer was used to assess the wear and friction characteristics of the nano-lubricants. A custom-made tapping torque tester was used to evaluate the nano-lubricants in a real-world application. It was found that the volumetric wear, Coefficient of Friction, and torque of the system decreased when MMT nanoparticles were added. …


Carbon Nanotori Reinforced Lubricants In Plastic Deformation Processes, Jaime Taha-Tijerina, Juan Manuel Martinez, Daniel Euresti, Patsy Yessenia Arquieta-Guillen Apr 2022

Carbon Nanotori Reinforced Lubricants In Plastic Deformation Processes, Jaime Taha-Tijerina, Juan Manuel Martinez, Daniel Euresti, Patsy Yessenia Arquieta-Guillen

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This research presents the effects of carbon nanotori structures (CNst) dispersed as reinforcement for metal-working and metal-forming lubricants. Synthetic (SL) and deep drawing (DD) nanolubricants were prepared following a two-step method at 0.01 wt.%, 0.05 wt.%, and 0.10 wt.% filler fractions. Slight increases in viscosity (<6%) for nanolubricants were observed as filler fraction was increased through various measured temperatures. Tribological behavior of nanolubricants displayed superb improvements under antiwear and extreme pressure conditions. The load carrying capacity (poz) increased by 16% and 22% at merely 0.01 wt.% CNst reinforcement and up to 73% and 107% at 0.10 wt.% filler fraction for SL and DD nanolubricants, respectively, compared to conventional materials. Additionally, at 0.10 wt.% wear scar evaluations showed a highest benefit of 16% and 24%, for SL and DD nanolubricants, …


One-Dimensional Lateral Force Anisotropy At The Atomic Scale In Sliding Single Molecules On A Surface, Yuan Zhang, Daniel J. Trainer, Badri Narayanan, Yang Li, Anh T. Ngo, Sushila Khadka, Arnab Neogi, Brandon Fisher, Larry A. Curtiss, Subramanian K.R.S. Sankaranarayanan, Saw Wai Hla Jan 2021

One-Dimensional Lateral Force Anisotropy At The Atomic Scale In Sliding Single Molecules On A Surface, Yuan Zhang, Daniel J. Trainer, Badri Narayanan, Yang Li, Anh T. Ngo, Sushila Khadka, Arnab Neogi, Brandon Fisher, Larry A. Curtiss, Subramanian K.R.S. Sankaranarayanan, Saw Wai Hla

Physics Faculty Publications

Using a q+ atomic force microscopy at low temperature, a sexiphenyl molecule is slid across an atomically flat Ag(111) surface along the direction parallel to its molecular axis and sideways to the axis. Despite identical contact area and underlying surface geometry, the lateral force required to move the molecule in the direction parallel to its molecular axis is found to be about half of that required to move it sideways. The origin of the lateral force anisotropy observed here is traced to the one-dimensional shape of the molecule, which is further confirmed by molecular dynamics simulations. We also demonstrate that …


High Regression Rate Hybrid Rocket Fuel Grains With Helical Port Structures, Stephen A. Whitmore, Sean D. Walker, Daniel P. Merkley, Mansour Sobbi Jan 2015

High Regression Rate Hybrid Rocket Fuel Grains With Helical Port Structures, Stephen A. Whitmore, Sean D. Walker, Daniel P. Merkley, Mansour Sobbi

Mechanical and Aerospace Engineering Faculty Publications

Results froma development campaign, where modern additive manufacturing methods are used to fabricate hybrid rocket fuel grains with embedded helical ports, are presented. The fuel grains were constructed from acrlyonitrile butadiene styrene using commercially available three-dimensional printer feedstockmaterial.Gaseous oxygen is used as the oxidizer for this test campaign.When compared to cylindrical fuel ports, significant increases in fuel regression rates were observed, and these increases in regression rate diminished with time as the helical fuel port burns to become progressivelymore cylindrical. Comparisons to the helical pipe flow skin friction correlation developed by Mishra and Gupta indicate that increased skin friction only …


Atomistic Investigation Of Scratching-Induced Deformation Twinning In Nanocrystalline Cu, Junjie Zhang, Tao Sun, Yoganda Yan, Dong Shen, Xiaodong Li Oct 2012

Atomistic Investigation Of Scratching-Induced Deformation Twinning In Nanocrystalline Cu, Junjie Zhang, Tao Sun, Yoganda Yan, Dong Shen, Xiaodong Li

Faculty Publications

Deformation twinning is an important deformation mode of nanocrystalline metals. In current study, we investigate the scratching-induced deformation twinning in nanocrystallineCu by means of molecular dynamics simulations. The tribological behavior, the deformation mechanisms, the formation mechanism of deformation twins, and the grain size dependence of the propensity of deformation twinning are elucidated. Simulation results demonstrate that deformation twinning plays an important role in the plastic deformation of nanocrystallineCu under nanoscratching, in addition to dislocation activity and grain boundary-associated mechanism. The nucleation of initial twinning partial dislocations originates from the dissociation of lattice partial dislocations that emit from grain boundary triple …


Arterial Wall Mechanics And Clinical Implications After Coronary Stenting: Comparisons Of Three Stent Designs, Linxia Gu, Shijia Zhao, Stacey R. Froemming Jan 2012

Arterial Wall Mechanics And Clinical Implications After Coronary Stenting: Comparisons Of Three Stent Designs, Linxia Gu, Shijia Zhao, Stacey R. Froemming

Department of Mechanical and Materials Engineering: Faculty Publications

The goal of this work is to quantitatively assess the relationship between the reported restenosis rates and stent induced arterial stress or strain parameters through finite element method. The impact of three stent designs (Palmaz–Schatz stent, Express stent, and Multilink Vision stent) on the arterial stress distributions were characterized. The influences of initial stent deployment location, stent-tissue friction, and plaque properties on the arterial stresses were also investigated. Higher arterial stresses were observed at the proximal end of the plaque. The Multilink–Vision stent induced lesser stress concentrations due to the high stiffness of the Cobalt Chromium material and thinner strut …


A Study Of Friction Testing Methods Applicable To Demoulding Force Prediction For Micro Replicated Parts, Kevin Delaney, David Kennedy, G. Bissacco Jan 2010

A Study Of Friction Testing Methods Applicable To Demoulding Force Prediction For Micro Replicated Parts, Kevin Delaney, David Kennedy, G. Bissacco

Conference Papers

For replication processes to be deemed successful it must be possible to remove the replicated parts from the tool after processing. With decreasing part and feature size the challenge of demoulding replicated parts increases since the resulting parts and replication tooling used are more delicate and can be easily damaged. Predictive demoulding force models can be used to optimise the part, tool and process parameters to maximise the likelihood of success. Developing accurate models for this process requires knowledge of the dominant interfacial contributions to friction and knowledge of the size scale at which the dominant contributions operate together with …


Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman Jan 2009

Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman

Birck and NCN Publications

Carbon nanotubes (CNTs) have gained increased interest in dynamic atomic force microscopy (dAFM) as sharp, flexible, conducting, nonreactive tips for high-resolution imaging, oxidation lithography, and electrostatic force microscopy. By means of theory and experiments we lay out a map of several distinct tapping mode AFM oscillation states for CNT tipped AFM cantilevers: namely, noncontact attractive regime oscillation, intermittent contact with CNT slipping or pinning, or permanent contact with the CNT in point or line contact with the surface while the cantilever oscillates with large amplitude. Each state represents fundamentally different origins of CNT-surface interactions, CNT tip-substrate dissipation, and phase contrast …


Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li Jun 2008

Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li

Faculty Publications

Hydrogen atmosphere can significantly change the tribological behavior at diamond and diamondlike carbon (DLC) surfaces and the friction-reducing effect depends on the partial pressure of hydrogen. We combined density functional theory modeling and thermodynamic quantities to predict the equilibrium partial pressures of hydrogen at temperature T, PH2 (T), for a fully atomic hydrogen passivated diamondsurface. Above the equilibrium PH2 (T), ultralow friction can be achieved at diamond and DLC surfaces. The calculation agrees well with friction tests at various testing conditions. We also show that PH2 (T) …


Spatial Admittance Selection Conditions For Frictionless Force-Guided Assembly Of Polyhedral Parts In Single Principal Contact, Shuguang Huang, Joseph M. Schimmels Apr 2006

Spatial Admittance Selection Conditions For Frictionless Force-Guided Assembly Of Polyhedral Parts In Single Principal Contact, Shuguang Huang, Joseph M. Schimmels

Mechanical Engineering Faculty Research and Publications

By judiciously selecting the admittance of a manipulator, the forces of contact that occur during assembly can be used to guide the parts to proper positioning. This paper identifies conditions for selecting the appropriate spatial admittance to achieve reliable force-guided assembly of polyhedral parts for cases in which a single feature (vertex, edge, or face) of one part contacts a single feature of the other, i.e., all single principal contact cases. These conditions ensure that the motion that results from frictionless contact always instantaneously reduces part misalignment. We show that, for bounded misalignments, if an admittance satisfies the misalignment-reducing conditions …


Admittance Selection For Force-Guided Assembly Of Polygonal Parts Despite Friction, Shuguang Huang, Joseph M. Schimmels Oct 2004

Admittance Selection For Force-Guided Assembly Of Polygonal Parts Despite Friction, Shuguang Huang, Joseph M. Schimmels

Mechanical Engineering Faculty Research and Publications

An important issue in the development of force guidance assembly strategies is the specification of an appropriate admittance control law. This paper identifies conditions to be satisfied when selecting the appropriate admittance to achieve force-guided assembly of polygonal parts for multipoint contact with friction. These conditions restrict the admittance behavior for each of the various one-point and two-point contact cases and ensure that the motion that results from contact reduces part misalignment for each case. We show that, for bounded friction and part misalignments, if the identified conditions are satisfied for a finite number of contact configurations and friction coefficients, …


Admittance Selection For Planar Force-Guided Assembly For Single-Point Contact With Friction, Shuguang Huang, Joseph M. Schimmels Sep 2003

Admittance Selection For Planar Force-Guided Assembly For Single-Point Contact With Friction, Shuguang Huang, Joseph M. Schimmels

Mechanical Engineering Faculty Research and Publications

This paper identifies procedures for selecting the appropriate admittance to achieve reliable planar force-guided assembly for single-point frictional contact cases. A set of conditions that are imposed on the admittance matrix is presented. These conditions ensure that the motion that results from contact reduces part misalignment. We show that, for bounded misalignments, if an admittance satisfies the misalignment-reduction conditions at a finite number of contact configurations and a given coefficient of friction /spl mu//sub M/) then the admittance will also ensure that the conditions are satisfied at all intermediate configurations for all coefficients less than /spl mu//sub M/.