Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Finite element analysis

2015

Selected Works

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

The Use Of Initial Imperfection Approach In Design Process And Buckling Failure Evaluation Of Axially Compressed Composite Cylindrical Shells May 2015

The Use Of Initial Imperfection Approach In Design Process And Buckling Failure Evaluation Of Axially Compressed Composite Cylindrical Shells

Faculty of Engineering University of Malaya

Thin-walled cylindrical shells are susceptible to buckling failures caused by the axial compressive loading. During the design process or the buckling failure evaluation of axially-compressed cylindrical shells, initial geometric and loading imperfections are of important parameters for the analyses. Therefore, the engineers/designers are expected to well understand the physical behaviours of shell buckling to prevent unexpected serious failure in structures. In particular, it is widely reported that no efficient guidelines for modelling imperfections in composite structures are available. Knowledge obtained from the relevant works is open for updates and highly sought. In this work, we study the influence of imperfections …


Enabling And Understanding Failure Of Engineering Structures Using The Technique Of Cohesive Elements, H. Jiang, Xiaosheng Gao, T. S. Srivatsan Apr 2015

Enabling And Understanding Failure Of Engineering Structures Using The Technique Of Cohesive Elements, H. Jiang, Xiaosheng Gao, T. S. Srivatsan

Dr. Xiaosheng Gao

In this paper, we describe a cohesive zone model for the prediction of failure of engineering solids and/or structures. A damage evolution law is incorporated into a three-dimensional, exponential cohesive law to account for material degradation under the influence of cyclic loading. This cohesive zone model is implemented in the finite element software ABAQUS through a user defined subroutine. The irreversibility of the cohesive zone model is first verified and subsequently applied for studying cyclic crack growth in specimens experiencing different modes of fracture and/or failure. The crack growth behavior to include both crack initiation and crack propagation becomes a …