Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Entire DC Network

Analyzing Heat Generated From Electro-Osmotic Flow Utilizing Computational Fluid Dynamics, Jordan Elizabeth Grothe May 2024

Analyzing Heat Generated From Electro-Osmotic Flow Utilizing Computational Fluid Dynamics, Jordan Elizabeth Grothe

Honors Thesis

Without extensive vascularization, the transfer of fluid and nutrients through human tissue is limited to diffusion and weak interstitial flow. Electroosmosis, or the flow of fluid driven by an electrical field, has become a promising solution. Scientists have begun applying electricity to human tissue to promote stronger interstitial flow; however, optimization of this process has proven to be a challenge due to ohmic heating. Cells function within a small range of temperatures and exposure to voltages exceeding the threshold will cause cells to degrade and die prematurely. This research seeks to better understand and quantify the range of voltage where …


Development Of A New Electro-Osmotic Consolidation Apparatus, Yenni Mariana Ramírez-Mazo, Juan Pablo Osorio, Sergio Agudelo Sep 2021

Development Of A New Electro-Osmotic Consolidation Apparatus, Yenni Mariana Ramírez-Mazo, Juan Pablo Osorio, Sergio Agudelo

Conference papers

Electro-osmotic consolidation is a ground improvement technique in which a DC voltage is applied to the soil via electrodes, in order to drain the water contained in the pores increasing the effective stress, and thus improving the geotechnical properties of the soil. The technique increases the shear strength, reduces the compressibility, and changes the chemical composition of the saturated soft clayey and silty soils to which it can be applied. Electro-osmotic consolidation has been successfully applied in different projects worldwide. This paper presents the development of a new electro-osmotic consolidation apparatus built at Universidad de Antioquia. Tests were carried on …


The Impact Of Electrostatic Correlations On The Electrokinetics, Elaheh Alidoosti May 2020

The Impact Of Electrostatic Correlations On The Electrokinetics, Elaheh Alidoosti

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this project we are interested in electrokinetics phenomenon (i.e., study of electrical charges in a liquid matter) and focus on three families of this phenomenon, dielectrophoresis, electro-osmosis and streaming current. For the first work, at concentrated electrolytes, the ion-ion electrostatic correlations effect is considered as an important factor in electrokinetics. In this project, we compute, in theory and simulation, the dipole moment for a spherical particle (charged, dielectric) under the presence of an alternating electric field using the modified continuum Poisson-Nernst-Planck (PNP) model by Bazant et al. (Phys. Rev. Lett. 106, 2011) [25]. We investigate the dependency of the …


Steric Effects On Ac Electro-Osmosis In Dilute Electrolytes, Brian D. Storey, Lee Edwards, Mustafa Sabri Kilic, Martin Z. Bazant Mar 2012

Steric Effects On Ac Electro-Osmosis In Dilute Electrolytes, Brian D. Storey, Lee Edwards, Mustafa Sabri Kilic, Martin Z. Bazant

Brian Storey

The current theory of alternating-current electro-osmosis (ACEO) is unable to explain the experimentally observed flow reversal of planar ACEO pumps at high frequency (above the peak, typically 10–100 kHz), low salt concentration (1–1000 μM), and moderate voltage (2–6 V), even taking into account Faradaic surface reactions, nonlinear double-layer capacitance, and bulk electrothermal flows. We attribute this failure to the breakdown of the classical Poisson-Boltzmann model of the diffuse double layer, which assumes a dilute solution of pointlike ions. In spite of low bulk salt concentration, the large voltage induced across the double layer leads to crowding of the ions and …


Steric Effects On Ac Electro-Osmosis In Dilute Electrolytes, Brian D. Storey, Lee R. Edwards, Mustafa Sabri Kilic, Martin Z. Bazant Mar 2011

Steric Effects On Ac Electro-Osmosis In Dilute Electrolytes, Brian D. Storey, Lee R. Edwards, Mustafa Sabri Kilic, Martin Z. Bazant

Brian Storey

The current theory of alternating-current electro-osmosis (ACEO) is unable to explain the experimentally observed flow reversal of planar ACEO pumps at high frequency (above the peak, typically 10–100 kHz), low salt concentration (1–1000 μM), and moderate voltage (2–6 V), even taking into account Faradaic surface reactions, nonlinear double-layer capacitance, and bulk electrothermal flows. We attribute this failure to the breakdown of the classical Poisson-Boltzmann model of the diffuse double layer, which assumes a dilute solution of pointlike ions. In spite of low bulk salt concentration, the large voltage induced across the double layer leads to crowding of the ions and …


Streaming Potential Generated By A Pressure-Driven Flow Over Superhydrophobic Stripes, Hui Zhao Jan 2011

Streaming Potential Generated By A Pressure-Driven Flow Over Superhydrophobic Stripes, Hui Zhao

Mechanical Engineering Faculty Research

The streaming potential generated by a pressure-driven flow over a weakly charged slip-stick surface [the zeta potential of the surface is smaller than the thermal potential (25 mV)] with an arbitrary double layer thickness is theoretically studied by solving the Debye–Huckel equation and Stokes equation. A series solution of the streaming potential is derived. Approximate expressions for the streaming potential in the limits of thin double layers and thick double layers are also given in excellent agreement with the full solution. To understand the impact of the slip, the streaming potential is compared against that over a homogeneously charged smooth …


Electro-Osmotic Flow Over A Charged Superhydrophobic Surface, Hui Zhao Jan 2010

Electro-Osmotic Flow Over A Charged Superhydrophobic Surface, Hui Zhao

Mechanical Engineering Faculty Research

Bubbles can be trapped inside textured structures such as grooves, forming a superhydrophobic surface. A superhydrophobic surface has a large effective hydrodynamic slip length compared to a smooth hydrophobic surface and holds the promise of enhancing electrokinetic flows that find many interesting applications in microfluidics. However, recent theoretical studies suggested that electro-osmotic flows over a weakly charged superhydrophobic surface

the zeta potential of the surface is smaller than the thermal potential (25 mV) can only be enhanced when liquid-gas interfaces are charged [T. M. Squires, Phys. Fluids 20, 092105 (2008); Bahga et al., J. Fluid Mech. 644, 245 (2010)]. So …


Thermally Developing Electro-Osmotic Convection In Circular Microchannels, Spencer L. Broderick Nov 2004

Thermally Developing Electro-Osmotic Convection In Circular Microchannels, Spencer L. Broderick

Theses and Dissertations

Thermally developing, electro-osmotically generated flow has been analyzed for a circular microtube under imposed constant wall temperature (CWT) and constant wall heat flux (CHF) boundary conditions. Established by a voltage potential gradient along the length of the microtube, the hydrodynamics of such a flow dictate either a slug flow velocity profile (under conditions of large tube radius-to-Debye length ratio, a/lambda_d) or a family of electro-osmotic flow (EOF) velocity profiles that depend on a/lambda_d. The imposed voltage gradient results in Joule heating in the fluid with an associated volumetric source of energy. For this scenario coupled with a slug flow velocity …


Numerical Simulations In Electro-Osmotic Flow, Joseph S. Tenny Sep 2004

Numerical Simulations In Electro-Osmotic Flow, Joseph S. Tenny

Theses and Dissertations

The developing flow field in a parallel plate microchannel, induced by wall motion, has been modeled numerically. This type of flow simulates the physical driving mechanism that exists in electro-osmotically generated flow with large channel diameter-to-Debye length ratios (Z). The physics of the flow field were compared between the moving wall model (MWM) and electro-osmotic flow (EOF) at Reynolds numbers of 1 and 1800, and Z > 2500. Also, Z-values between 50 and 500 were studied to investigate the accuracy of the MWM. Results show that for Z-values greater than 100 the MWM shows good agreement with EOF.

The dynamics of …